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Where does Apache Flink come from ?

It all started in 2014

@ StratoSphere /

Above the Clouds

2009 - 2014 since 2014

e Batch processor on top of streaming runtime
o First Apache Flink 0.6.0 release August 2014



Evolution Timeline of Flink
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Stratosphere: General Purpose Programming+Database Execution

Draws on Adds Draws on

Database Technology MapReduce Technology
& ) & )
» Relational Algebra « lterations « Scalability

» Declarativity « Advanced Dataflows |+ User-defined

* Query Optimization « General APIs Functions

» Robust Out-of-core » Native Streaming « Complex Data Types

» Schema on Read

i J/ & y,

A. Alexandrov, D. Battré, S. Ewen, M. Heimel, F. Hueske, O. Kao, V. Markl, E. Nijkamp, D. Warneke: Massively Parallel Data Analysis with PACTs on

Nephele. PVLDB 3(2): 1625-1628 (2010)

D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, D. Warneke: Nephele/PACTs: a programming model and execution framework for web-scale

analytical processing. SoCC 2010: 119-130

A. Alexandrovy, R.Bergmann, S. Ewen, et al: The Stratosphere platform for big data analytics. VLDB J. 23(6): 939-964 (2014)



Stratosphere 0.4

Pact APl (Java) DataSet API (Scala)

Stratosphere Optimizer

Stratosphere Runtime

| ocal Remote

Batch processing on a pipelining engine, with iterations ...



Eventually becomes Flink

Data Stream

Processin ]
d Fvent-driven

Batch Processing Aarolfieats
pplications

realtime results

, from data streams
process static and

historic data data-driven actions

and services
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Stateful Computations Over Data Streams



dataArtisans

£

Original creators of
Apache Flink®

PLATFORM

dA Platform 2
Stream Processing for the
Enterprise



dA platform

—
Streams from
i Kafka, Kinesis,
S3, HDFS,
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1 Kostas Tzoumas e
| ollow ] v
@kostas_tzoumas NE o,
mdya{] Sections» Categories» Events  Podcasts Jobs Reports  Newsletter ~ Company» O m LOGIN uper GXCited to announce our new
B ; ; ‘ : : e! data Artisans ==> Ververica.

Read about it here:
ververica.com/blog/introduci... and
follow us at @VervericaData

German startup data Artisa
to Alibaba For €90 million

By Andrii Degeler, January 7th, 2019.

Introducing our new name!

Today, we’re excited to share the next phase of our journey - introducing
our new name!

ververica.com

7:25 AM - 8 Feb 2019

11 Retweets 34 Likes 3 e s e ‘ a@@’

Qs T n O w4

Chinese e-commerce giant Alibaba Group has reportedly acquired Berlin-based data Artisans.

Kostas Tzoumas @kostas_tzoumas - Feb 8 v
1 PS: There is an easter egg in the name. Reply to me if you found it :-)
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dA/ Ververica platform with Streaming Ledger
supporting full ACID
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Apache Flink in a Nutshell

Stateful computations over streams
real-time and historic
fast, scalable, fault tolerant, in-memory,
event time, large state, exactly-once

_ Queries Application

Sl Ny —
= Database
Devices % - % i
/ FIink \ IIIIII Stream

etc. Historic—=

Datz {%%%J {%%%] Fle / Object

Storage

12



Overview of the Apache Flink Architecture

Apache Flink® is an open-source stream processing framework for
distributed, high-performing, always-available, and accurate data
streaming applications.

+ Key Features:
» Bounded and unbounded data

* Event time semantics

Event Processing
Machine Learning
Graph Processing

= - =
8 P = >5 | g3
» Stateful and fault-tolerant T 35 B3 £ 3 3=
. . (v = [ (U] -
* Running on thousands of nodes with g S —
s DataStream API DataSet API
Very gOOd throughpUt and Iatency 5 Stream Processing Batch Processing
* Exactly-once semantics for stateful
. g Runtime
computations. S Distributed Streaming Dataflow
2 : : : :
Flexible wmdqwnng basefi .on time, 3 Local Cluster Cloud
count, or sessions in addition to data- § Single VM Standalone, YARN GCE, EC2

driven windows
http://flink.apache.org
+ DataSet and DataStream programming
abstractions are the foundation for user
programs and higher layers
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Everything Streams

Apache Flink handles everything as streams internally.

Continuous streaming and applications use "unbounded streams".
Batch processing and finite applications use "bounded streams".

I
:4 bounded stream ———»

<«— bounded stream 5

IIIIE

! |
| start of € =—mmmmmm e past ndw future ——=—==———mm e

I the stream :

, +—— unbounded stream
<—— unbounded stream '




Apache Flink v1.0's Software Stack
HDFS

|II| |III |Hi|
HCatalog

HBase DataSet (Java/Scala) DataStream (Java/Scala)
JDBC Flink Optimizer Stream Builder
\ C ) ()

Kafka

Table
Dataflow
SAMOA
Dataflow

Hadoo
p M/R

Flink Datatflow Runtime

> o O ©
RabbitMQ O o, O — .o

Flume
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Dissecting
Flink




What is Apache Flink?

Real-time data
streams

4

Kafka, RabbitMQ, ..

Historic data

HDFS, JDBC, ..

+ ":"

Flink " ) 5 — ) A

,,,,,, g , ,(master)

ETL, Graphs,

Machine Learning
Relational, ...

Low latency,
windowing,
aggregations, ...



Internal Execution Workflow of Flink

case class Path (from: Long, to:
Long)

val tc = edges.iterate(10) { DatafIOW
paths: DataSet[Path] =>
val next = paths Graph

.join(edges)
.where("to")
.equalTo("from") {
(path, edge) =>
Path(path.from, edge.to)

Pre-flight (Client)

}
.union(paths)
.distinct()
next  Program
}

deploy

w~ggerators

intermediate
Workers results

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas:
Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38(4): 28-38 (2015)



Cornerstones of Flink Design

Flexible Data
Streaming Engine

- Low Latency Stream Proc.
—> Highly flexible windowing
semantics (i.e. think Beam)

High-level APls,
beyond key/value pairs

- Java, Scala, Python(beta only)
- Relational-style optimizer

Robust Algorithms on
Managed Memory

- No OutOfMemory Errors

— Scales to very large JVMs
- Efficient Checkpointing/
Recovery & Saved points Op.

Additional Library Support

- Storm Compatibility Library
- Graphs / ML Pipelines
- ML & Streaming ML (Catching up)

Pipelined Execution

of Batch Programs

—> Better shuffle performance
—> Scales to very large groups

Native lterations

- Very fast Graph Processing
—> Stateful Iterations for ML




1. Failures and downtime 2. Out of order and late data
= Checkpoints & savepoints = Eventtime support
= Exactly-once guarantees =  Watermarks

state
snapshots

A DN
o PSSP NN
> S EEEEN | 1E
— ? ~~~~~ ~\~ ,l,&
% ' ~ - .N.i____—_—f ote
3. Results when you need them 4. Accurate modeling
=  Low latency = True streaming engine
= Triggers = Sessions and flexible
Latency at Full Throughput Wi n d OWS

=e—Median (w/ 99th percentile)




5. Batch + streaming
= One engine
= Dedicated APIs

Batch Streaming
program program

7. Ecosystem

= Rich connector
ecosystem and 3™ party
packages

o
W/ﬁ% épe elastic ==

\

cassandra ‘@hadﬁugp KIQ”E% n fl
kafka .
> ] BhRabbit

6. Reprocessing

= High throughput, event
time support, and
savepoints

flink -s <savepoint> <job>

8. Community support

=  One of the most active
projects with over 200
contributors

' vy
"'V( ? 508
9
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Feature Radar of Flink (circa 1Q2021

New- and Stable Features

Stable
Production Ready Kubernetes
. DataStream (streamin
& Evolving E ( 9) Java 8
SQL & Table API Standalone Java 11
: : GEP
Bota o Pulsar . Yamn Scala 2.12
Source & Sink : :
DataStream (batch) SOl ik i Heap/FS State Back. Fook HA
Ch -Data-Capt API . Hive Catalog OO
Hge-b v D JDBC Sink i RocksDB/FS State Back
and Connectors : ) i
Unified Sink AP ™. Kinesis Source & Sink i

Python Table AP| [/ FileSink]

Unitied Sourca API File Source & Sink Kafka Source & Sink

[w/ Kafka, File] Rabbit MQ Source PubSub Source Elastic Search Sink
State Processor API ; i
AA“CIOUd 0SS HBase Sink Cassandra Sink
] o SQL CLI FileSystem
Sy, NI SOGS e N DES Elles S3 FileS
Gl : > ileSystem ileSystem
MVP Kubernetes-based HA . Azure Blob i  FileSystem / /
: : ... (ZK-alternative) ™. FileSystem i
Machine Learning GCS FileSystem

Library
Python
DataStream API

https://flink.apache.org/roadmap.html

APls Languages Clients Resource Managers Connectors State Backends Libraries 22



Feature Radar of Flink (circa 1Q2021)

Features Phasing Out Approaching End-of-Life

Scala 2.11

Dataser Queryable State

Deprecated

Scala Shell
Gelly
Legacy SQL
Query Engine
APls Languages Clients Resource Managers Connectors State Backends Libraries

23



Using
(Programming with)
Flink




Layered Abstractions of Flink

Layered abstractions to
na\/igate Simple to Complex use cases SELECT room, TUMBLE_END(rowtime, INTERVAL '1' HOUR), AVG(temp)

FROM sensors
GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room

High-level
Analytics API

Stream- & Batch
Data Processing

.keyBy("sensor™")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

_ val stats = stream

Stateful Event- Process Function (events, state, time)
Driven Applications

def processtElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { .. }

out.collect(..) // emit events
state.update(..) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)



Batch / Streaming APIs (Scala)

case class Word (word: String, frequency: Int)

DataSet API (batch):

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment()
val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}
.groupBy("word") .sum("frequency")
.print()

DataStream API (streaming):

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}
.keyBy("word")
.window(Time.of(5,SECONDS)).every(Time.of(1,SECONDS))
.sum("frequency”)
.print()




Batch & Streaming

Streaming Batch

Data transfer pipelined blocking or
pipelined




Data sets and Operators

Program

B0 N0 N

Operator X Operator Y

...... (v) @ﬁ
...... (v) @E

Parallel Execution

E‘pm e

A2) [




Flink's set of Operators

Map, Reduce, Join, CoGroup, Uniorlterate, Delta Iterate
Filter, FlatMap, GroupReduce, Project, Aggregate, Distinct,

Vertex-Update, Accumulators, ...




Base-Operator: Map

-----------------------------

............................

-----------------------------

----------------------------

T




Base-Operator: Reduce

-----------------------------

N — B

------------------------------

----------------------------

Hl — N




Base-Operator: Cross

l
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Base-Operator: Join

..........................................................
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Base-Operator: CoGroup

----------------

.......................

H N
|
B |
]
[]

-----------------------------




DataSet and transformations (Java)

[hput — x — st — v —Second |
Operator X Operator Y

ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> input = env.readTextFile(input);

DataSet<String> first = input
.filter (str -> str.contains(“Apache Flink®));

DataSet<String> second = first
.filter (str -> str.length() > 40);

second.print();
env.execute();
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WordCount in Java (with DataSet)

ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();

DatasSet<String> text = readTextFile (input);

DataSet<Tuple2<String, Integer>> counts= text
.map (1 -> l.split(“\\w+”))
.flatmap ((String[] tokens,
Collector<Tuple2<String, Integer>> out) -> {
Arrays.stream(tokens)
filter(t -> t.length() > 0)
.foreach(t -> out.collect(new Tuple2<>(t, 1)));

)
.groupBy(9)
.sum(1);

env.execute("Word Count Example”);



WordCount in Scala (with DataSet)

val env = ExecutionEnvironment
.getExecutionEnvironment

val input = env.readTextFile(textInput)

val counts = text
.flatMap { line => line.split("\\W+") }
filter { term => term.nonEmpty }
.map { term => (term, 1) }
.groupBy(0)
.sum(1)

env.execute()



Another Example: Transitive Closure (Java)

IterativeDataSet<Tuple2<Long,Long>> paths = edges.iterate (10);

DataSet<Tuple2<Long,Long>> nextPaths = paths
.join(edges) .where(1l).equalTo(0)
with((left, right) -> Tuple2<Long, Long>(left.f@, right.f1l);)

.union(paths)
.distinct();

DataSet<Tuple2<Long, Long>> tc = paths.closeWith(nextPaths);

38



Transitive Closure (Scala)

Transitive Closure

Path (from: Long, to: Long)

tc = edges.iterate(10) { paths: DataSet[Path] =>
next = paths

.join(edges) .where("to").equalTo("from") {
(path, edge) => Path(path.from, edge.to)

}

.union(paths).distinct()

next

¥
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More Details on the
Flink API




DataSet

Central notion of the batch-based programming AP

Files and other data sources are read into DataSets
DataSet<String> text = env.readTextFile(..)

Transformations on DataSets produce DataSets
DataSet<String> first = text.map(..)

DataSets are printed to files or on stdout
first.writeAsCsv(..)

Fxecution is triggered with env.execute()

41



Data Types

= Basic Java lypes
» String, Long, Integer, Boolean, ...
* Arrays
= Composite Types
* Tuple
* PoJo (Java Objects)
» Custom type

42



Data Types - Tuples

= Bean-style Java classes & field names

= Tuples and position addressing

= Any data type with key selector function

= Easy, lightweight and generic way of encapsulating data in Flink
« Tuplel upto Tuple25

Example:

Tuple3<String, String, Integer> person =
new Tuple3<>("Max", "Magmum”, 42)
// zero-based index !
String firstName = person.fO ;
String secondName = person.fl;
Integer age = person.f2 ;

43



Beyond Key/Value Pairs

DataSet<Page> pages = ...;
DataSet<Impression> impressions = ...;

DataSet<Impression> aggregated =
impressions
.groupBy("url™)

.sum("count");

pages.join(impressions).where("url”).equalTo("url")

// custom data types

class Impression { class Page {
public String url; public String url;
public long count; public String topic;



Data types and grouping

public static class Access { public static class User {
public int userId; public int userId;
public String url; public int region;

public Date customerSince;

}
¥

DataSet<Tuple2<Access,User>> campaign = access.join(users)
.where(“userId®).equalTo(“userId®)

DataSet<Tuple3<Integer,String,String> somelLog;
someLog.groupBy(0,1).reduceGroup(...);

45



Long Operator Pipelines

DataSet<Tuple...
DataSet<Tuple...
DataSet<Tuple...

DataSet<Tuple.

large.
.where(3).equals(1)

.with(new JoinFunction() { ... });

jo

> large = env.readCsv(...);
> medium = env.readCsv(...);
> small = env.readCsv(...);

> joinedl =
in(medium)

DataSet<Tuple...> joined2 =
small.join(joinedl)

oW
W

here(0).equals(2)
ith(new JoinFunction() { ... });

DataSet<Tuple...> result = joined2.groupBy(3)

.max(2);

!
/'N\
X

e
large

| small
Y
medium

oty



Available transformations

" map " Cross

= flatMap = project

= filter = distinct

= reduce = union

= reduceGroup " iterate

" join = jterateDelta
= coGroup " repartition

" aggregate S

47



Transtformations: Map

DataSet<Integer> integers = env.fromElements(1l, 2, 3, 4);

// Regular Map - Takes one element and produces one element
DataSet<Integer> doubleIntegers =

integers.map(new MapFunction<Integer, Integer>() {
@verride

public Integer map(Integer value) {
return value x 2;

});

doublelIntegers.print();
>2, 4, 6, 8

// Flat Map — Takes one element and produces zero, one, or more elements.
DataSet<Integer> doubleIntegers2 =

inteﬁg{s.fle}nap(new FlatMapFunction<Integer, Integer>() {
verride
public void flatMap(Integer value, Collector<Integer> out) {
. out.collect(value *x 2);

3k

doubleIntegers2.print();

>2, 4, 6, 8 48



Transformations: Filter

// The DataSet
DataSet<Integer> integers = env.fromElements(1l, 2, 3, 4);

DataSet<Integer> filtered

integers.filter(new FilterFunction<Integer>() {

@Override

public boolean filter(Integer value) {
return value != 3;

¥

g -

integers.print();
>1, 2, 4

49



Transformations: Group and Reduce

» DataSets can be split into groups [
Stephan 18

* Groups are defined using a
common key

// (name, age) of employees
DataSet<Tuple2<String, Integer>> employees = ..

// group by second field (age)
DataSet<Integer, Integer> grouped = employees.groupBy(1)
// return a list of age groups with its counts

. reduceGroup(new CountSameAge()); m

50



Transtformations: GroupReduce

public static class CountSameAge implements GroupReduceFunction
<Tuple2<String, Integer>, Tuple2<Integer, Integer>> {

@verride
public void reduce(Iterable<Tuple2<String, Integer>> values,
Collector<Tuple2<Integer, Integer>> out) {

Integer ageGroup = 0;
Integer countsInGroup = 0;

for (Tuple2<String, Integer> person : values) {
ageGroup = person.fl;
countsInGroup++;

}

out.collect(new Tuple2<Integer, Integer>
(ageGroup, countsInGroup));

51



Transtormations: Joining 2 DataSets

// authors (id, name, email)

DataSet<Tuple3<Integer, String, String>> authors = ..;
// posts (title, content, author_id)
DataSet<Tuple3<String, String, Integer>> posts = ..;

DataSet<Tuple2<
Tuple3<Integer, String, String>,

Tuple3<String, String, Integer>
>> archive = authors.join(posts).where(0).equalTo(2);
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Transtormations: Joining 2 DataSets

// authors (id, name, email)

DataSet<Tuple3<Integer, String, String>> authors = ..;
// posts (title, content, author_id)
DataSet<Tuple3<String, String, Integer>> posts = ..;

DataSet<Tuple2<
Tuple3<Integer, String, String>,
Tuple3<String, String, Integer>
>> archive = authors.join(posts).where(0).equalTo(2);
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Transformations: Join with join function

// authors (id, name, email)

DataSet<Tuple3<Integer, String, String>> authors = ..;
// posts (title, content, author _id)
DataSet<Tuple3<String, String, Integer>> posts = ..;

// (title, author name)
DataSet<Tuple2<String, String>> archive =

authors.join(posts).where(@).equalTo(2)
.with(new PostsByUser());

public static class PostsByUser implements
JoinFunction<Tuple3<Integer, String, String>,
Tuple3<String, String, Integer>,

Tuple2<String, String>> {
@Override
public Tuple2<String, String> join(

Tuple3<Integer, String, String> left,
Tuple3<String, String, Integer> right) {
return new Tuple2<String, String>(left.fl, right.f0);
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Data Sources

Batch API

Files

« HDFS, Local file system,
MapR file system

« Text, Csv, Avro, Hadoop input
formats

= JDBC

HBase
Collections

Stream API

= Files

= Socket streams
= Kafka

= RabbitMQ

= Flume

= (Collections

= Implement your own
«  SourceFunction.collect

55



Data Sources

Text

= readTextFile(“/path/to/file”)
CSV

= readCsvFile(“/path/to/file”)
Collection

= fromCollection(collection)

= fromElements(1,2,3,4,5)

56



Data Sources: Collections

ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();

// read from elements

DataSet<String> names = env.fromElements(“Some”, “Example”,

“Strings”);

// read from Java collection

List<String> list = new ArraylList<String>();
list.add(“Some”) ;

list.add(“Example”);

list.add(“Strings”);

DataSet<String> names = env.fromCollection(list);

57



Data Sources: File-based

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// read text file from local or distributed file system
DataSet<String> locallines =

env.readTextFile(”/path/to/my/textfile");

// read a CSV file with three fields
DataSet<Tuple3<Integer, String, Double>> csvInput =

env.readCsvFile(“/the/CSV/file")
.types(Integer.class, String.class, Double.class);

// read a CSV file with five fields, taking only two of them
DataSet<Tuple2<String, Double>> csvInput =

env.readCsvFile(“/the/CSV/file")

// take the first and the fourth field
.includeFields("10010")

.types(String.class, Double.class);
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Data Sinks

Text
= writeAsText(“/path/to/file”)

= writeAsFormattedText(“/path/to/file”,
formatFunction)

CSV
= writeAsCsv(“/path/to/file”)

Return data to the Client
= Print()

= Collect()

= Count()

59



Data Sinks (lazy)

= Lazily executed when env.execute() is called

DataSet<.> result;

// write DataSet to a file on the local file system
result.writeAsText(“/path/to/file");

// write DataSet to a file and overwrite the file if it exists
result.writeAsText("/path/to/file” ,FileSystem.WriteMode.OVERWRITE);

// tuples as lines with pipe as the separator "a|b|c”
result.writeAsCsv("/path/to/file", "\n", “|");

/é_this wites values as strings using a user—defined TextFormatter
object
result.writeAsFormattedText("/path/to/file",
new TextFormatter<Tuple2<Integer, Integer>>() {
public String format (Tuple2<Integer, Integer> value) {
) return value.fl + " — " + value. f@

¢ B

.
’
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Data Sinks (eager)

= Eagerly executed

DataSet<Tuple2<String, Integer> result;

// print
result.print();

// count
int numberOfElements = result.count();

// collect
List<Tuple2<String, Integer> materializedResults = result.collect();



More Details: WordCount's main() in Java

public static void main(String[] args) throws Exception {
// set up the execution environment
final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment () ;

// get 1nput data either from file or use example data
DataSet<String> inputText = env.readTextFile(args[0]);

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in tuples containing: (word,1)
inputText.flatMap(new Tokenizer())
// group by the tuple field "0"
.groupBy(0)
//sum up tuple field "1"
.reduceGroup(new SumWords());

// emit result
counts.writeAsCsv(args[1], “\n", " ");
// execute program
env.execute("WordCount Example");
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Execution Environment

public static void main(String[] args) throws Exception {
// set up the execution environment
final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment();

// get input data either from file or use example data
DataSet<String> inputText = env.readTextFile(args[0]);

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in tuples containing: (word,1)
inputText. flatMap(new Tokenizer())
// group by the tuple field "0"
.groupBy(0)
//sum up tuple field "1"
.reduceGroup(new SumWords());

// emit result
counts.writeAsCsv(args[1], "\n", " ");
// execute program
env.execute("WordCount Example");
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Data Sources

public static void main(String[] args) throws Exception {
// set up the execution environment

final ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment() ;

// get input data either from file or use example data
DataSet<String> inputText = env.readTextFile(args[0]);

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in tuples containing: (word,1)
inputText.flatMap(new Tokenizer())
// group by the tuple field "0"
.groupBy(0)
//sum up tuple field "1"
.reduceGroup (new SumWords());

// emit result
counts.writeAsCsv(args([1], "\n", "™ ");
// execute program
env.execute("WordCount Example");
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Data Types

public static void main(String[] args) throws Exception {
// set up the execution environment
final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment () ;

// get input data either from file or use example data
DataSet<String> inputText = env.readTextFile(args[0]);

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in tuples containing: (word,1)
inputText.flatMap(new Tokenizer())
// group by the tuple field "0"
.groupBy(0)
//sum up tuple field "1"
.reduceGroup (new SumWords());

// emit result
counts.writeAsCsv(args[1], "\n", " ");
// execute program
env.execute("WordCount Example");
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Transformations

public static void main(String[] args) throws Exception {
// set up the execution environment
final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment();

// get 1nput data either from file or use example data
DataSet<String> inputText = env.readTextFile(args([0]);

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in tuples containing: (word,1)
inputText. flatMap(new Tokenizer())
// group by the tuple field "o0"
.groupBy(0)
//sum up tuple field "1"
.reduceGroup(new SumWords());

// emit result
counts.writeAsCsv(args[1], "\n", " ");
// execute program
env.execute("WordCount Example");
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User Functions

public static void main(String[] args) throws Exception {
// set up the execution environment
final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment() ;

// get input data either from file or use example data
DataSet<String> inputText = env.readTextFile(args[0]);

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in tuples containing: (word,1)
inputText.flatMap(new Tokenizer())
// group by the tuple field "0"
.groupBy(0)
//sum up tuple field "1"
.reduceGroup(new SumWords());

// emit result
counts.writeAsCsv(args[1], "\n", " ");
// execute program
env.execute("WordCount Example");
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DataSinks

public static void main(String[] args) throws Exception {
// set up the execution environment
final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment() ;

// get input data either from file or use example data
DataSet<String> inputText = env.readTextFile(args[0]);

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in tuples containing: (word,1)
inputText.flatMap(new Tokenizer())
// group by the tuple field "0"
.groupBy(0)
//sum up tuple field "1"
.reduceGroup (new SumwWords());

// emit result
counts.writeAsCsv(args[1], "\n", " ");
// execute program
env.execute("WordCount Example");
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Execute !

public static void main(String[] args) throws Exception {
// set up the execution environment
final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment() ;

// get input data either from file or use example data
DataSet<String> inputText = env.readTextFile(args[0]);

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in tuples containing: (word,1)
inputText.flatMap(new Tokenizer())
// group by the tuple field "0"
.groupBy(0)
//sum up tuple field "1"
.reduceGroup (new SumWords());

// emit result
counts.writeAsCsv(args[1], "\n", " ");
// execute program
env.execute("WordCount Example");
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WordCount: Map

public static class Tokenizer
implements FlatMapFunction<String, Tuple2<String, Integer>> {

@verride
public void flatMap(String value,

Collector<Tuple2<String, Integer>> out) {
// normalize and split the line
String[] tokens = value.tolLowerCase().split("\\W+");

// emit the pairs
for (String token : tokens) {

if (token.length() > 0) {
out.collect(

new Tuple2<String, Integer>(token, 1));
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WordCount: Map: Interface

public static class Tokenizer
implements FlatMapFunction<String, Tuple2<String, Integer>> {

@verride
public void flatMap(String value,

Collector<Tuple2<String, Integer>> out) {
// normalize and split the line
String[] tokens = value.toLowerCase().split("\\W+");

// emit the pairs
for (String token : tokens) {

if (token.length() > 0) {
out.collect(

new Tuple2<String, Integer>(token, 1));
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WordCount: Map: Types

public static class Tokenizer
implements FlatMapFunction<String, Tuple2<String, Integer>> {

@verride
public void flatMap(String value,

Collector<Tuple2<String, Integer>> out) {
// normalize and split the line
Stringl[] tokens = value.toLowerCase().split("\\W+");

// emit the pairs
for (String token : tokens) {

if (token.length() > 0) {
out.collect(

new Tuple2<String, Integer>(token, 1));
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WordCount: Map: Collector

public static class Tokenizer
implements FlatMapFunction<String, Tuple2<String, Integer>> {

@Override
public void flatMap(String value,

Collector<Tuple2<String, Integer>> out) {
// normalize and split the line
String[] tokens = value.tolLowerCase().split("\\W+");

// emit the pairs
for (String token : tokens) {

if (token.length() > 0) {
out.collect(

new Tuple2<String, Integer>(token, 1));
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WordCount: Reduce

public static class SumWords implements
GroupReduceFunction<Tuple2<String, Integer>,
Tuple2<String, Integer>> {

@verride
public void reduce(Iterable<Tuple2<String, Integer>> values,

Collector<Tuple2<String, Integer>> out) {
int count = 0;
String word = null;
for (Tuple2<String, Integer> tuple : values) {

word = tuple.f0;
count++;

}

out.collect(new Tuple2<String, Integer>(word, count));



WordCount: Reduce: Interface

public static class SumWords implements
GroupReduceFunction<Tuple2<String, Integer>,

Tuple2<String, Integer>> {

@verride
public void reduce(Iterable<Tuple2<String, Integer>> values,

Collector<Tuple2<String, Integer>> out) {
int count = 0;
String word = null;
for (Tuple2<String, Integer> tuple : values) {

word = tuple.f0;
count++;

}

out.collect(new Tuple2<String, Integer>(word, count));
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WordCount: Reduce: Types

public static class SumWords implements
GroupReduceFunction<Tuple2<String, Integer>,
Tuple2<String, Integer>> {

@verride
public void reduce(Iterable<Tuple2<String, Integer>> values,

Collector<Tuple2<String, Integer>> out) {

int count = 0;

String word = null;

for (Tuple2<String, Integer> tuple : values) {
word = tuple.f0;
count++;

¥

out.collect(new Tuple2<String, Integer>(word, count));
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WordCount: Reduce: Collector

public static class SumWords implements
GroupReduceFunction<Tuple2<String, Integer>,
Tuple2<String, Integer>> {

@verride
public void reduce(Iterable<Tuple2<String, Integer>> values,

Collector<Tuple2<String, Integer>> out) {
int count = 0;
String word = null;
for (Tuple2<String, Integer> tuple : values) {
word = tuple.f0;
count++;

|y

out.collect(new Tuple2<String, Integer>(word, count));
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Real-time Streaming
with Flink




Flink Real-time Streaming overview

Historically, Flink first supported Batch (via PACT etc) and Streaming was
added later on.

Streaming and Batch use same code paths in runtime

Differences
 Streaming does not use Flink’s memory management

 Streaming uses its own compiler/ optimizer

Alibaba has been working on unitying the Batch and Streaming APIs of
Flink
« The planis for Flink to just use a single Unified Streaming API for EVERYTHING
(but still work in progress) !
https://files.alicdn.com/tpsservice/8510c65ffalfde57274595c5bb009347 . pdf
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Feature Radar of Flink (circa 1Q2021

New- and Stable Features

Stable
Production Ready Kubernetes
. DataStream (streamin
& Evolving § ( ) Java 8
SQL & Table API i Standalone Java 11
Beta i é CEP
e = Pulsar : Yamn Scala 2.12
Source & Sink 2 :
DataStream (batch) SOl ik i Heap/FS State Back. Zook HA
Ch -Data-Capt API . Hive Catalog OO
o e s JDBC Sink :  RocksDB/FS State Back
and Connectors ) i
Unified Sink AP ™. Kinesis Source & Sink

Python Table AP| [/ FileSink]

Unified Source AP File Source & Sink  Kafka Source & Sink

[w/ Kafka, File] Rabbit MQ Source PubSub Source Elastic Search Sink
State Processor API ; i
AA“CIOUd 0SS HBase Sink Cassandra Sink
. o SQL CLI FileSystem
e WRISOURS e N DES Elles S3 FileS
Gl : > ileSystem ileSystem
MVP Kubernetes-based HA . Azure Blob i  FileSystem / /
: : ... (ZK-alternative) *. FileSystem i
Machine Learning GCS FileSystem
Library h :
Python
DataStream API

APls Languages Clients Resource Managers Connectors State Backends Libraries



Feature Radar of Flink (circa 1Q2021)

Features Phasing Out Approaching End-of-Life

Scala 2.11

Dataser Queryable State

Deprecated

Scala Shell
Gelly
Legacy SQL
Query Engine
APls Languages Clients Resource Managers Connectors State Backends Libraries
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Current Flink API Stack (circa 1Q2019)

DataStream API DataSetAPI

StreamTransform Operator Tree
Table APl & SQL
DataStream API DataSet API
Streaming Process Batch Process
e | =T
Runtime
Distributed Streaming DataFlow

Local Cluster Cloud
Single JVM Standalone/Yarn EC2/GCE




Current real-time stream processing

DataStream instead of DataSet
StreamExecutionEnvironment instead of ExecutionEnvironment

StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();

DataStream<String> tweets = env.socketTextStream(host,port);

DataStream<Tuple2<String, Integer>> filteredTweets = tweets
.flatMap(new SelectLanguageAndTokenize())
.partition(0)
.map(s -> new Tuple2<String, Integer>(s, 1))
.groupBy (@) .sum(1)
.flatMap(new SelectMaxOccurence());

tweets.print();
env.execute();
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Streaming operators

= Most DataSet operators = DataStream-specific

can be used operators (snip)

* map, filter, flatMap, + CoMap, CoReduce, etc:
reduce, reduceGroup, join, share state between
cross, coGroup, iterate, streams
project, grouping, - Temporal binary ops: join,
part|t|on|ng, aggregations, Cross, ..

union (merge), ... - Windows: policy-based

flexible windowing
« Time, Count, Delta
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Life of data streams

L Createj -»[ T j_p pj
“~~—_

= Create: create streams from event sources (machines, databases, logs, sensors,

..)

= Collect: collect and make streams available for consumption (e.g., Apache Kafka)

= Process: process streams, possibly generating derived streams (e.g., Apache
Flink)
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Example of a Stream Processing Application

_ Live Report /
Inject Extract Group by Increment Dashboard

click Userld Userld counter

Source map() window()/ Sink

- HEES
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Anatomy of Stream Processing Application

Inject
click

Source

Operator

Extract
Userld

map()

Stream

Group by
Userld
keyBy()/

window()/
apply()

o

Increment
counter

Sink

Source

1]

t

Operator
Subtask

/

Source

2]

map()

Stream |
Partition ::

|

map()
2]

keyBy()/

i window()/
i apply()

| -

i keyBy()/
i window()/
apply()

2]

parallelism = 2

Sink
{1]

parallelism = 1

Streaming Dataflow
(condensed view)

Streaming Dataflow
(parallelized view)
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Stream Partitioning across Subtasks

Abstraction over:

Stream Partition " Subtask output

*  pipelined-bounded
/ «  pipelined-unbounded
Subtask 1 Subtask 3 - Blocking
= Scheduling type
- allatonce
*  next stage on complete output
Subtask 2 Sk 4l *  next stage on first output

= Transport
*  high throughput via buffers
* low latency via buffer timeout



Another Example w/ Flink's DataStream API

val lines: DataStream[String]

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor"
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

~

Window | Sink
(state read/write)

Source Transform

env.addSource(new FlinkKaFkaConsumer@ll(m)):}

s

Source

Transformation

Windowed Transformation

Sink

Streaming
Dataflow
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Rich Windowing semantics in Flink

= Trigger policy

* When to trigger the computation on current window
= Eviction policy

* When data points should leave the window

*  Defines window width/size
= E.g., count-based policy

* evict when #elements > n

+ start a new window every n-th element
= Built-in: Count, Time, Delta policies

Flink was the ver* 15t Open-source framework which suEported the Generalized
Streaming Model proposed by Google Dataflow/ Apache Beam



Windowing example

//Build new model every minute on the last 5 minutes

//worth of data

val model = trainingData
.window(Time.of(5,TimeUnit.MINUTES))
.every(Time.of(1,TimeUnit .MINUTES))
.reduceGroup(buildModel)

//Predict new data using the most up-to-date model
val prediction = newData Training Da\ta@

.connect(model)
4
New Data Q Prediction
91

.map(predict);




Window Join example

case class Name(id: Long, name: String)
case class Age(id: Long, age: Int)
case class Person(name: String, age: Int)

val names = ...
val ages = ...

names.join(ages)
.onWindow(5, TimeUnit.SECONDS)
.where("id")
.equalTo("id") {(n, a) => Person(n.name, a.age)}
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Yet another example of Stream Processing/
Analysis with Flink

<
M A
Delta
of
5%
price

R

Tumbling
30 sec

groupby

case class Count(symbol: String, count: Int)
val defaultPrice = StockPrice("", 1000)

=

val pricewarnings = stockStream.groupBy("symbol™)
.window(Delta.of(©.05, priceChange, defaultPrice))
-.mapwWindow(sendwWarning _)

4 ™~ e 2 P y By Aoy ~z 1ambr o2 ~ L . ~ 2 P C ~ 3 ~ pay 2 b~ T L - e a8 s
rcountc cne numoel warnwngs every nadij a muwnute

val warningsPersStock = pricewarnings.map(Count(_, 1))
.groupBy("symbol™)
.window(Time.of(3©, SECONDS))
.sum(“count™)

More at: http://flink.apache.org/news/2015/02/09/streaming-example.html 7



ed vs. Streaming

d according to Flink)




Ak.a.: It everything is
, Why is there
a DataSet APl and where
will this end?




A.k.a.. | have heard that
"batch is a special case of
streaming’, so does

now own the world?



What changes faster? Data or Query?

Data changes slowly Data changes fast
compared to fast application logic
changing queries is long-lived

| | continuous dapplications,
ad-hoc quer €3, c/gz‘a exploration, data pipelines, standing queries,
ML training and anomaly detection, ML evaluation, ...

(hyper) parameter tuning

Batch Processing Stream Processing

Use Case Use Case



Summary on Another View of Batched vs. Streaming

What Changes Fasters ? Your Code or Your Data ?
= dData/dt >> dCode/dt => a Data Streaming problem

= dCode/dt >> dData/dt => a Data Exploration problem

(and likely to become a Data Streaming problem later)

Src: Prof. Joe Hellerstein of UCBerkeley



What changes faster? Data or Query?

Data changes slowly Data changes fast
compared to fast application logic
changing queries is long-lived

ad-hoc queries, data exploration, continuous dapplications,
ML training and data pipelines, standing queries,

(hyper) parameter tuning anomaly detection, ML evaluation, ...

DataSet AP| DataStream AP




Abstraction/APls and Runtime

. Modelling
Model, Semantics, APIs Applications
Storage Modelling
Infrastructure
| | B Running
Execution Runtime “  Applications



Samentics/APls: Everything Streams

Flink is good here...
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Eventual goal of Flink, Not yet achieved as of Feb 2019

Data changes slowly Data changes fast
compared to fast application logic
changing queries s long-lived

DataStream AP DataStream AP
BoundedStream UnboundedStream

e WU OOV W OWT N ATT T T

ugl AL T




Latency vs. Completeness (in Tyter's words)

Event Time
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Latency vs. Completeness

TIME IN STREAMING

ORDERED BY EVENT TIME

m m m EPISODE IV EPISODE V EPISODE VI EPISODE VII EPISODE VIII m

The

Attack of Revenge of A New The Empire Return of The Force The Last The Rise of
Phantom . . : : Skywalker
the Clones the Sith Hope Strikes Back the Jedi Awakens Jedi y
Menace
1999 2002 2005 1977 1980 1983 2015 2017 2019
\ )

PROCESSING TIME



Latency vs. Completeness

TIME IN STREAMING

EVENT TIME
EPISODE IV EPISODE V EPISODE VI m m m EPISODE VI EPISODE VIiI m
A New The Empire Return of PhaT:teom Attack of Revenge of The Force The Last The Rise of
Hope Strikes Back the Jedi the Clones the Sith Awakens Jedi Skywalker
Menace
1977 1980 1983 1999 2002 2005 2015 2017 2019

ORDERED BY PROCESSING TIME



Latency versus Completeness

Bounded/ Unbounded/
Batch Streaming
Data is as complete
as it gets within that Trade of latency
Batch Job versus completeness

No fine latency control



The Eventual Goal of Flink (WIP as of Apr 2021)

Data changes slowly Data changes fast
compared to fast application logic
changing queries is long-lived

continuous applications,

ad-hoc queries, data exploration, o , _
data pipelines, standing queries,

ML training and
(hyper) parameter tuning

anomaly detection, ML evaluation, ...

DataSet AP| DataStream AP




The Eventual Goal of Flink (WIP as of Apr 2021)

Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration,
ML training and
(hyper) parameter tuning

D

P

Data changes fast
application logic
is long-lived

continuous applications,
data pipelines, standing queries,
anomaly detection, ML evaluation, ...

DataStream AP
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The Eventual Goal of Flink (WIP as of Apr 2021)

Data changes slowly Data changes fast
compared to fast application logic
changing queries is long-lived

DataStream AP DataStream AP
BoundedStream [UnboundedStream

e WU OOV W OWT N ATT T T

ugl AL T




The Eventual Goal of Flin

< (WIP as of Apr 2021)

DataStream API

BoundedStream
No latency SLA

Assume Data
Completeness

—

DataStream API

UnboundedStream

Latency /
Completeness
[radeoff




On the Runtime Side?

Streaming

= Keep up with real time, some extra capacity for catch-up
= Receive data roughly in order as produced
= Latency is important

Batch

= Fast forward through months/years of history
= Massively parallel unordered reads
= Throughput most important

Event Time
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Streaming Runtime

= Time in data stream must be quasi monotonous,
produce time progress (watermarks)

= Always have close-to-latest
incremental results

= Resource needs change over time
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Batch Runtime

= QOrder of time in data does not matter (parallel
unordered reads)

= Bulk operations (2 phase hash/sort)
= Longer time for recovery (no low latency SLA)

= Resource requirements change fast throughout
the execution of a single job
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Ordered and unordered reads

read unordered
(massively parallel splits)

N
=) — -

(low parallelism, per partition)

OIE=mE)
@I —) /
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What is Flink's take here?

Uniqge Network Stack, high throughput, low latency, memory
spee

Unique Fault Tolerance Model that recovers batch and streaming
with tunable cost / recovery-lag

Sources can read streams and parallel input splits

Different Data Structures optimized for incremental results
(DataStream API) and for batch results (DataSet API)

Most unified runtime, but more unification in Runtime still
needed...
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Streams and Storage

- Distant Recent
Past Past
. Ti
getting there... "
Bulk store — Messaging
A ApaChe Pub-sub
HDEFS, S3, GCS, Pravega \ N
SAN, NAS, NFS, ECS, Kafka / PubSub /

Swift, Ceph, ... Kinesis /... .,



Summary of Batch on Streaming

= Batch programs are a special kind of
streaming program

=
Pipelined <:> Pipelined or
Data Exchange Blocking Exchange

Streaming Programs Batch Programs




Current Flink API Stack (circa 1Q2019)

DataStream API DataSetAPI

StreamTransform Operator Tree
Table APl & SQL
DataStream API DataSet API
Streaming Process Batch Process
e | =T
Runtime
Distributed Streaming DataFlow

Local Cluster Cloud
Single JVM Standalone/Yarn EC2/GCE




Proposed New Flink API Stack (WIP)

Table API & SQL DataStream DataSet Table & SQL
Relational Streaming Batch Relational

DataStream API DataSet API DAG & StreamOperator
Streaming Process Batch Process Unified Cors API

Runtime
Distributed Streaming DataFlow
Cluster
Standalona/Yarn

= https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.htm|



https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html

Goal: Stream Processor for all Applications

Batch
processing

Machine Learning at scale
Item

Stream . Py
processing

NNNNN




Gelly — Flink’s Graph Library (on its way out)

= Library with graph operations
» Common graph stats, PageRank, SSSP
Connected Components, label propagation
* Vertex-centric API

* Gather-apply-scatter AP|
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Flink’'s Native Support for Iteration




Built-in vs. Driver-based Looping (lteration) Support

Loop outside the system, in driver

lient?’
) L rogram
.@had@@p _______ 5 s \ ~s-:: ______ p g
] -~ \ ~~‘\~ ————— -
= n y - ~———
-»%»-» E=d» F Step] > Ej»-» For/While loop in client submits one

job per iteration step

i" ‘_‘“ => terative program looks like many
Spor _,-_——"" T — independent jobs
*-*g»-¢g»-» g»m» &b
Data reuse by caching in memory
and/or disk

Dataflows with feedback
edges

-0 0508 mu
— ./V ystem IS Itera 'IOI.'I'

aware, can optimize the

Flink
S. Ewen, S. Schelter, K. Tzoumas, D. Warneke, V. Markl: lterative Parallel jOb

Data Processing with Stratosphere: an Inside Look. SIGMOD 2013
S. Ewen, K. Tzoumas, M. Kaufmann, V. Markl:
Spinning Fast Iterative Data Flows. PVLDB 5(11): 1268-1279 (2012) 123



Flink supports iterations in the Dataflow

partial
solution

partial
solution

" ———— -

/
4

Built-in operator to support looping over data

Apply Step-function to partial solution until convergence

Step-function can be arbitrary Flink program

Convergence via fixed number of iterations or custom convergence criteria.

Operator state is preserved across different iterations

Loop-invariant data is cached 124



Flink supports Iterations in the Dataflow

Replace

————————————————————————————————

partial
solution

partial
solution

i ————————— -

Step function

________________________________

DataSet<Page> pages = ...
DataSet<Neighborhood> edges = ...

IterativeDataSet<Page> pagesIlter = pages.iterate(maxIterations);
DataSet<Page> newRanks = update (pagesIter, edges);

DataSet<Page> result = pagesIter.closeWith(newRanks)
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lterate natively with deltas (i.e. Stateful Iterations)

workset A
partial . X

so ution

Merge deltas

= Compute next workset and changes to partial solution until workset is empty.
= (Generalize vertex-centric computing model of Pregel and Graphlab
= Efficient and fits well with Graph-based algorithms and ML applications
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lterate natively with deltas (i.e. Stateful Iterations)

workset

partial
solution

Merge deltas

Deltalteration<...> pagesIter = pages.iterateDelta(initialDeltas, maxIterations, 9);
DataSet<...> newRanks = update (pagesIter, edges);
DataSet<...> newRanks = ...

DataSet<...> result = pagesIter.closeWith(newRanks, deltas)
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lterative processing example

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.generateSequence(1l, 10).iterate(incrementToTen, 1000).print
env.execute("Iterative example")

def incrementToTen(input: DataStream[Long]) = {
val incremented = input.map {_ + 1}
val split = incremented.split
{x => if (x >= 10) "out" else "feedback"}
(split.select("feedback™), split.select("out"))

= S _
C I \ C
I I

\N o« n 4
~Jeedbackes 128




Optimizing Iterative Programs

Pushing work : : : e -
g . Caching Loop-invariant Data Maintain state as index
,out of the loop
. B
r Bgnnected Components ieration\ ............................................. .
: [ Combine :
+ ws . 3 Find Minimum {
. Forward NN | [
Hash Partiticn Sort on | Match | Forward :
[0 T D
P?:ellne > Join (co Red !
Breaker Hash Partition \ Candidate Id educe "
' on [0] with 5 Find Minimum !
ligr ' SR WERRTO " Candidate Id I l l
i : ' CACHED Forward Match :
| Hash Partition | 1§ hdfs:///gr S — [ S Update | Redistr
aph/edge il
onl ol ! ; ps.tsvg : | Hash Index Com?gnent - l—
M S — A
1 1
e i o O D O O O O O O ¢ ), ) d
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Yet another Example: Iterative processing

DataSet<Page> pages
DataSet<Neighborhood> edges =
DataSet<Page> oldRanks = pages; DataSet<Page> newRanks;

(i = 9; i < maxIterations; i++) {
newRanks update(oldRanks, edges)
oldRanks = newRanks

}

DataSet<Page> result = newRanks;

DataSet<Page> update (DataSet<Page> ranks, DataSet<Neighborhood> adjacency) {
oldRanks
.join(adjacency)
.where(“id“).equalTo(“id*)
with ( (page, adj, out) -> {
(long n : adj.neighbors)
out.collect( Page(n, df * page.rank / adj.neighbors.length))
})
.groupBy (“id*) 130
.reduce ( (a, b) -> Page(a.id, a.rank + b.rank) );




An Example (ML application) which needs
lterations in the Dataflow

900

Factorizing a matrix with v oo
28 billion ratings for B oo
recommendations
D‘; } § . (Scale of Netflix
eer T or Spotify)

More at: http://data-artisans.com/computing-recommendations-with-flink.html 131



Benefits with Delta Iterations

45000000
-5 40000000
O
TS 35000000
5
Q30000000
-
9 25000000
3
20000000
&
QL 15000000
O
O 10000000
+=
5000000
O wwwwwwwww Iw |xeJwaJwaJx o e e e e e e e IS S s e e e e e e e
1 6 11 16 21 26 31 36 41 46 51 56 61

Iiteration 132



Runtime [milliseconds]

Performance Comparison b/w
Native, Unrolling, and Delta

PageRank with 60 iterations (until convergence)

8000
6000
Runtime per iteration 4000
240
\\,\ 2000
\w ,,\
180 R o el /\ /\
\/ \ \ [\
Y \/\J/ \\r'/ \ 0
Flink Spark Flink Delta
120
60
o)
10 20 30 40 50

lteration

Il 50 Iterations
(extrapolated)

M 20 iterations
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Delta lterations => Fast Graph analysis etc

Performance competitive
with dedicated graph
analysis systems

30 iterations

61 iterations and 30 iterations of
PageRank on a Twitter follower
graph with Hadoop MapReduce
and Flink using bulk and delta
iterations

... and mix and match
ETL-style and graph analysis
In one program

61 iterations

Hadoop Flink bulk Flink delta

More at: http://data-artisans.com/data-analysis-with-flink.html 134



Other APl elements & tools

= Accumulators and counters
* Int, Long, Double counters
* Histogram accumulator
» Define your own

= Broadcast variables

= Visualization

= Local debugging/testing mode

135



Recall: Layered Abstractions of Flink

Layered abstractions to
ﬂa\/igate Simple tO Complex use cases SELECT room, TUMBLE_END(rowtime, INTERVAL '1' HOUR), AVG(temp)

FROM sensors
GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room

High-level
Analytics API

Stream- & Batch
Data Processing

.keyBy("sensor™")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

_ val stats = stream

Stateful Event- Process Function (events, state, time)
Driven Applications

def processtElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { .. }

out.collect(..) // emit events
state.update(..) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

} I 136



Low Level: Process Function

public void processElementl (Transaction txn, Context ctx, Collector<Transaction> out) {
// keep the transaction in the internal state until the approval comes
pendingTransaction.update (txn) ;
// schedule a timer to trigger the timeout
ctx.timerService () .registerProcessingTimeTimer (txn.getTimestamp () + TIMEOUT MILLIS) ;

public void processElement2 (ApproveOrReject approval, Context ctx, Collector<Transaction> out) {
// get and remove the transaction from the state
Transaction txn = pendingTransaction.value();
pendingTransaction.clear() ;
// forward the transaction to the main stream
outi:col lect (Exn) ;

public void onTimer (long timestamp, OnTimerContext ctx, Collector<Transaction> out) {
// check if the transaction is still there, in which case it would be timed out
Transaction txn = pendingTransaction.value();
if. (Exn- '=-null) . {
// write to the timeout stream
ctx.output (TIMEOUT STREAM, txn) ;
pendingTransaction.clear() ;

| 137



Strength of DataStream API

Very expressive stream processing

* Transform data, update state, define windows, aggregate,
etc

Highly customizable windowing logic

» Assigners, Triggers, kvictors, Lateness
Asynchronous |/O

* Improve communication to external systems
Low-level operations



Limitations of DataStream API

= Writing Distributed programs is not easy
* Stream processing technology spreads/changes rapidly
* New Streaming concepts (time, state, ...

= Require knowledge & skill
+ Continuous applications have special requirements
* Programming experience (Java/ Scala)

=> |Learning curve can be steep

= Most users want to focus on their business logic



Design Goals for Flink Table & SQL AP

= Easy, Declarative and concise Relational AP|

= Tool for a wide range of use cases

= Unification of Batch & Streaming with SAME
semantics

= Queries efficiently executed

* Let Flink handle state, time, and common
mistakes



Apache Flink’s Relational API

ANSI SQL

LINQ-style Table API

tableEnvironment
.scan("clicks")
.groupBy('user)
.select('user, 'url.count as 'cnt)

SELECT user, COUNT(url) AS cnt
FROM clicks

GROUP BY user

Unified APIs for batch & streaming data

A query specifies exactly the same result
regardless whether its input is
static batch data or streaming data.



Another Example of Table AP

customers = envreadCsvFile(..).as('id, 'mktSegment)
filter( )

orders = env.readCsvFile(..)
.filter( o => dateFormat.parse(o.orderDate).before(date) )

.as( s s > )

items = orders
.join(customers) .where( )
.join(lineitems) .where( )
.select( , , ,

result = items

. groupBy ( ) ) )
.select( s s s )
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High Level: SQL ans)

SELECT
campaign,
TUMBLE _START(clickTime, INTERVAL °1’ HOUR),
COUNT(ip) AS clickCnt
FROM adClicks
WHERE clickTime > €2017-01-01°
GROUP BY campaign, TUMBLE(clickTime, INTERVAL €1’ HOUR)

v

“— Query

()?IIIIII

143



Features supporting Data Pipelines

= Support for POJOs, maps, arrays, and other
nested types
= Large set of built-in functions (150+)

 LIKE, EXTRACT, TIMESTAMPADD, FROM_BASEG4,
MD5, STDDEV_POP AVG, ...

= Support for custom UDFs (scalar, table,
aggregate)




Query Translation

tableEnvironment
.scan("clicks")
.groupBy('user)
.select('user, 'url.count as 'cnt)

SELECT user, COUNT(url) AS cnt
FROM clicks
GROUP BY user

Table API SQL API
l 1 l
Table API I 2 | | Calcite

[ Validator Calcite Catalog Parser & Validator]

\ Calcite Logical Plan / Input data is

bounded v unbounded
oF DataSet Rules |——p| Calcite Optimizer [¢—— DataStream Rules (streaming)

s e

DataSet 4— DataSet Plan DataStream Plan ——p  DataStream

External
Tables
DataSet

4— DataStream

<«




What if “Clicks” is a File ?

Result is
produced at once

Input data is
read at once

\

user | cTime | ud NS N
12:00:00 | https://... SELECT

12:00:00 | https://... > user,

COUNT(url) as cnt
12:00:02 | https://... FROM clicks
: GROUP BY user
12:00:03 | https://... & P
=




What if “Clicks” is a Stream ?

§ Input data is
Clicks @ continuously read

Cuser | cTime | wl o |
/B —{ sc.ccr A

12:00:00 | https://... m——
COUNT(url) as cnt _.
12:00:02 | https://... ) FROM clicks

I, Liz 1

Result is
continuously updated

The result is the same!



Flink SQL

*since Flink 0.9.0 (June 2015)

: Event time and
SQL commandline processing time

Java/Scala

ik APl Configuration in Streaming and
Stream/Batch Processing Y AM L BatCh

Source/Sink User-defined
definition in YAML functions

“NO CODING REQUIRED”

148



SQL Feature set in Flink 1.6.0

* SELECT FROM WHERE

* GROUP BY / HAVING
—Non-windowed, TUMBLE, HOP, SESSION windows

*+ JOIN/IN

—Windowed INNER, LEFT / RIGHT / FULL OUTER JOIN
—Non-windowed INNER, LEFT / RIGHT / FULL OUTER JOIN

* [streaming only] OVER / WINDOW
—UNBOUNDED / BOUNDED PRECEDING

* [batch only] UNION / INTERSECT / EXCEPT / ORDER BY




SQL Client




How to use Flink SQL

SQL Client Database /

HDFS

SELECT
user,

COUNT(url) AS cnt Submit Query

FROM clicks
GROUP BY user

(Zatakag

v

Submit Job

Optimizer

Query

Changelog
or Table Result Server
Results

Results State

Gateway

Initialized by:

——environment my-config.yaml Initialized by:
conf/sql-client-defaults.yaml

Modified by DDL commands within session.



SUBMIT DETACHED QUERIES

Database /
HDFS

SQL Client

INSERT INTO dashboard

SELECT i
user, Submit Query
COUNT(url) AS cnt >

FROM clicks )
GROUP BY user Optimizer Submit Job

Catalog

> Que

Cluster ID &

Job ID * ) Result Server =
Target Information

Gateway

Initialized by:

——environment my-config.yaml Initialized by:
conf/sql-client—-defaults.yaml

Modified by DDL commands within session.




Extended JOIN support

= Support for windowed outer equi-joins

SELECT d.ridelId, d.departureTime, a.arrivalTime
FROM Departures d LEFT OUTER JOIN Arrivals a
ON d.ridelId = a.rideld
AND a.arrivalTime BETWEEN
d.deptureTime AND d.departureTime + '2' HOURS

= Support for non-windowed inner joins

SELECT u.name, u.address, o.productlId, o.amount
FROM Users u JOIN Orders o
ON u.userlId = o.userId




Streaming SQL and Batch SQL

Dashboard
Many short queries e ——
BATCH
View Materialization \ - = == il
Standing Query e 2 B |
STREAMING " ==

Appl. — | stream || A

Streaming SQL
8 —(stream |
CDC

Query
DB

materialized
real-time view

K/V Store or
SQL Database
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Flink SQL on Data Streams

Fasy, Declarative and concise Relational AP
Tool for a wide range of use cases

Unification of Batch & Streaming with SAME
semantics

Queries efficiently executed
» Let Flink handle state, time, and common mistakes



SQL Semantics: Streaming = Batch

|
U =
Query
input table (regular / bounded) result table
SQL Query

— 4 ' Dynawmic |—P () Hteam
Sheanld) —® |20 |— IC&AJ:;‘S — | e l —

Streaming SQL Query
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“Join” me for some trading

buy

sell

Join
$ 17
3 42

U

125

- &

157



Introducing Time-versioned Table Joins

@0 0 0 S|

-

A
/

1
5
& e
. -~ o N W—

£ 142 |3 -
agofloofia oo ok gl AU ® O

event time
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A Special new Feature for Flink SQL (V1.6
onward)



SQL for pattern analysis?
A new Feature for Flink SQL (Beta Rel in V1.7) |

el

SELECT * from ?

160



Introducing MATCH RECOGNIZE

SELECT *

FROM TaxiRides

MATCH RECOGNIZE (
PARTITION BY driverId
ORDER BY rideTime
MEASURES

S.rideld as sRideld

AFTER MATCH SKTP PAST LAST ROW
PATTERN (S M{2,} E)’

DEFINE
S AS S _J1s55tart = _trye,
M AS M.rideld <> S.rideld,
E AS E.isStart = false

pa
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Use Case: Data Pipelines

= Transform, aggregate and move events in real-time

= Low-latency ETL

 Convert and write streams to file systems, DBMS, K-V
stores, indexes, ...

* Inaest appearina files to produce streams

Retract™ -

State
= [T | . (e —~ O
Q\’é— -




Use Case: Stream & Batch Analytics

- Sun analytical queries over bounded and unbounded
ata

= Query and compare historic and real-time data
= Compute and update data to visualize in real-time

@ B

S‘fo+9
()~ [Gnes |
T Quenk ‘ﬁyt’t;k




Building a Dashboard Example

SELECT cell,
isStart,
HOP_END(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE) AS hopEnd,
COUNT(*) AS cnt
FROM (SELECT rowtime, isStart, toCellld(lon, lat) AS cell Ter—"
FROM TaxiRides) =
GROUP BY cell, g
isStart, e e
HOP(rowtime, INTERVAL '5"' MINUTE, INTERVAL '15' MINUTE) o

Elastic
Search




Dissecting
Flink

(aka Flink Internals




What is Apache Flink?

HDFS
HCatalog

HBase ~ | DataSet (Java/Scala) DataStream (Java/Scala)
JDBC Flink Optimizer Stream Builder

Kafka

Dataflow
SAMOA
Dataflow

Hadoo
p M/R

Flink Datatflow Runtime

(3 —a
RabbitMQ = 3

Flume _

166



What is Apache Flink?

Real-time data
streams

4

Kafka, RabbitMQ, ..

Historic data

HDFS, JDBC, ..

+ ":"

Flink " ) 5 — ) A

,,,,,, g , ,(master)

ETL, Graphs,

Machine Learning
Relational, ...

Low latency,
windowing,
aggregations, ...



Technologies inside Flink

case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {

paths: DataSet[Path] =>
val next = paths
.join(edges)

.where("to")
.equalTo("from") {
(path, edge) =>

Path(path.from, edge.to) Pre_ﬂig h‘t (C||ent)

Dataflow
Graph

=

}

.union(paths)
.distinct()
next  Program
}

deploy

w~ggerators

intermediate
Workers results

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas:
Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38(4): 28-38 (2015)



Architecture

* Hybrid MapReduce and MPP database runtime

 Pipelined/Streaming engine
— Complete DAG deployed

Job Manager

Worker 3 Worker 4



Flink’s Pipelined Execution Model

« Flink program = DAG* of operators and intermediate streams
* Operator = computation + state
* Intermediate streams = logical stream of records

- ap ASHN @
@ AAA A>é S ﬁA AAA o o ) AbdA— | o s

A
[}
'

i /!
Materialized Intermediate
Data Stream

(blocking data exchange)

Stateful Operator

ntrol Event
\ ,- F . // A Control Eve
~ 7 ] R 4 b ;
~ - I - — ~ ~ B
T _ A Data Record
‘—

Transientintermediate F% Operator State

Datao Stream (pipelined data exchange)



Flink's Execution Model

= A program is a graph (DAG) of operators
= Operators = computation + state

= Operators produce intermediate results = logical
streams of records

= Other operators can consume those

O e

ID1

ID2
ID3

—0—



An Example

A map-reduce
job with Flink

"Blocked" result partition

TaskMaA

JobManager

Y

2 &

ExecutionGraph

.....
.

@ 1 ‘
TaskManager 2
N
(2
@7 m

. 3b



An Example (cont'd)

Streaming

"Pipelined" result partition

Task Manager 1

Job

Manager

Execution Graph

> >
> >
N
.
.
.
.

........

.....
:
Y.

Task Manager 2

----------

-
>

"% Bb



Benefits of Pipelined Data Transfer

= True Stream and Batch Processing in one stack

= Avoid materialization of large intermediate
results

= Better performance for many batch workloads

*Flink supports blocking data transfer as well |



Pipelined Data Transfer

Interm.
Program DataSet
Result
1 ] 2 z
; i No intermediate
Pipelined & e . imaterialization!
s e B e o o o e e e
Execution

Pipeline 1

r
I
|
|
I
I
I
I



Recap: DataSet

[mput — x —[ st — v —{Second |
Operator X Operator Y

ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> input = env.readTextFile(input);

DataSet<String> first = input

.filter (str -> str.contains(“Apache Flink®));
DataSet<String> second = first

.filter (str -> str.length() > 40);

second.print()
env.execute();



Common misconception

= Programs are not executed eagerly

= |nstead, system compiles program to an
execution plan and executes that plan

177



Example: grep

for stri
for str2
ey ——1 P3|
for str3

Romeo,

Romeo, >
where art Load

thou Romeo?

178



Staged (batch) execution

Romeo,
Romeo,
where art
thou Romeo?

Subseqgent stages:

Grep log f_c‘)r matches

o€ +7—::_
agets

Create/cache Log

___________ .

ESbshd—

ﬁ

Caching in-memory

and disk if needed

179



Pipelined execution

Stage 1:
Note: Log g

DataSet is never =================ezlaode Ao

“created”!

Searcr
O rstri

N\ | 90110011 |

Romeo,
Romeo,
where art
thou Romeo?

;Sr@sa;féh

—— Load
for str2

Search

: for str3
Data transfer in-

memory and disk if
needed

——
——

180




Benetits of pipelining

Time to complete grep (sec)

2500 -~

2250 -~

2000 -

1750 -~

1500 -~

1250 -~

1000 -~

750 A

500 -~

250 A

0

= 25 node cluster
= Grep log for 3 terms

= Scale data size from
100GB to 1TB

0

1

DO 200 300 400 500 600 700 800 <200 1000

Cluster memory Data size (GB)

exceeded
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» Running Jobs

Flink Grep benchmark (10/18/2014, 4:09:39 PM)
| carcel

Name Tasks Starting Running Finished Canc
DataSource (TextlnputFormat (hdfs:/user/robert/datasets/access- 384 0 0 0

1000.log) - UTF-8)

Filter (grep for lemon) 384 0] 384 0 0

(@]
o

DataSink(TextOutputFormat (hdfs:/user/robert/playground/flink- 384 49
grep-out_lemon) - UTF-8)

Filter (grep for tree) 384 0 384 0 ]

DataSink(TextOutputFormat (hdfs:/user/robert/playground/flink- 384 0 384 0 0
grep-out_tree) - UTF-8)

Filter (grep for garden) 384 0 384 0 0

DataSink({TextOutputFormat (hdfs:/user/robert/playground/flink- 384 317 0 0
grep-out_garden) - UTF-8)

Sum 2688 (] 2572 0 0

ﬁ




Drawbacks of pipelining

= Long pipelines may be active at the same time leading to
memory fragmentation
+ FLINK-110T: Changes memory allocation from static to adaptive

= Fault-tolerance harder to get right

« FLINK-986: Adds intermediate data sets (similar to RDDS) as first-
class citizen to Flink Runtime. Will lead to fine-grained fault-tolerance
among other features.
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Support Heavy ETL Data Pipelines

184



Internal data representation

How is intermediate data internally represented?
JVM Heap

JVM Heap

Romeo,

wherefore
art thou

‘map

00110011
00110011

reduce

L

art, 1
0, 1
Romeo, 1
Romeo, 1

|

00010111

01110001

01111010

o

BN N |

Network transfer

Local sort
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Internal data representation

Two options: Java objects or raw bytes
Java objects

* FEasier to program
« Can suffer from GC overhead

* Hard to de-stage data to disk, may suffer from “out of memory exceptions”

Raw bytes
* Harder to program (customer serialization stack, more involved runtime
operators)

+ Solves most of memory and GC problems
«  Overhead from object (de)serialization

Flink follows the raw byte approach
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Memory Management in Flink

Unmanaged || e Teeeenl

Hea AN
Q. e public class WC {\\‘
8 public String word;
5 public int count;
S } l
= || Flink Managed || | | = “teeeoo_ I/’

Heap empty e

page
Network Buffers
Pool of Memory Pages

Flink manages its own memory

User data stored in serialized byte arrays

In-memory caching and data processing happens in a dedicated memory fraction
Never break the JVM heap

Very efficient disk spilling and network transfer 187



Memory in Flink

heap

heap

Network Managed Unmanaged
buffers

JVM Heap

User code objects

bl T
-,
-
-

)

Sorting, hashing,

. empty
cachmg page
Shuffling,
broadcasts Pool of Memory Pages

public class WC { N\
public String =words
public int coynf;
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Memory in Flink (2)

= Internal memory management
* Flink initially allocates 70% of the free heap as byte[] segments
* Internal operators allocate() and release() these segments

= Flink has its own serialization stack
* All accepted data types serialized to data segments

= Easy to reason about memory, (almost) no OutOtMemory

errors, reduces the pressure to the GC (smooth
performance)

189



Operating on serialized data

Microbenchmark

= Sorting 1GB worth of (long, double) tuples

= 6/,108,864 elements
= Simple quicksort

70

60
@ 50
@ 40
— 30

10

Sort Performance

Objects Serialized in-
place

Serialized
key-prefixes

190




Benefits of managed memory

- g/lokre reliable and stable performance (less GC effects, easy to go to
1SK)

Time per iteration

140 B Flink Bulk
B Spark (Bulk)
h \A-/\W\/\
&
=
S
(]
D
22} 80
@
&“
50
20
0 5 10 15 20

Iteration
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Smooth out-of-core performance

[y
N

[y
o

00

Execution time in minutes
N o

N

oIIIIIIIIIIIE
1 2 3 4 5 6 7 8 9 10 11 12

Size of build side input in GB

Single-core join of 1KB Java objects beyond memory (4 GB)
Blue bars are in-memory, orange bars (partially) out-of-core

More at: http://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.htm| 192
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Flink Data Transport (logical)

Abstraction over:

Stream Partition " Subtask output

*  pipelined-bounded
/ «  pipelined-unbounded
Subtask 1 Subtask 3 - Blocking
= Scheduling type
- allatonce
*  next stage on complete output
Subtask 2 Sk 4l *  next stage on first output

= Transport
*  high throughput via buffers
* low latency via buffer timeout



Flink Data Transport (physical)

Task Manager 1

TCP Connection

Task Manager 2

\//

Subtask 1
Buffer with
Data in Queue
Buffer Pool \\
| 2 CLIN
L] 4
O 3 ol
Buffer Pool\
Empty
Buffer
Subtask 2

., A

P

-
EEEEEN]
N

Subtask 3
Buffer Pool
/». ] 'O
T 2 |0
/
™~
\\f 1]
N
R 11 2
Buffer Pool
Subtask 4




Flink Data Transport (physical)

Task Manager 1 Task Manager 2
Subtask 1 Subtask 3
Buffer Pool Buffer Pool

3 3 1

[ L \\ TCP Connection /’.. u
4 L T 2 |0

:‘: EEEEEE
3 Vs : 1
DE = // Backpressure \j
4 H W HEEEEE?
Buffer Pool Buffer Pool

Subtask 2 Subtask 4




Flink Data Transport (physical)

Task Manager 1 Task Manager 2
Subtask 1 Subtask 3
Buffer Pool Buffer Pool

3 J 1
L1 TCP Connection s OO
4 ~ ,é/. 2 (OO
j EEEEEE
3 1 z = 1
Ll // Backpressure \j
4 HE N HEEEEN?
Buffer Pool Buffer Pool

Subtask 2 Subtask 4




Flink Data Transport (physical)

Task Manager 1 Task Manager 2
Subtask 1 Subtask 3
Buffer Pool Buffer Pool

3 1
N TCP Connection A LD
ENEEEN "~y
- \\\1‘ 1
Backpressure ™N
I mmm WL
Buffer Pool e Raceiver Buffer Pool
Zoom in
Subtask 2 : = Subtask 4




Credit-based Flow Control (Flink 1.5)

Sender Receiver
add credit
channel credit—,. @ /—\
queue of full \/ available buffers for
buffer to send send buffers and receiving
(backlog) announce backlog size

Sender announces backlog.

. Receiver attempts to allocate buffers.
Receiver gives credit for allocated buffers.

- Result: Never blocks on the TCP connection.



Credit-based Flow Control (Flink 1.5)

= Never blocks the TCP Checkpoint Duration
connection

= Avoids overloading of
slow receivers

= Improves checkpoint
alignment

B Without Flow Control
B With Flow Control



Reduced Overhead

= |ow latency via buffer timeout = high throughput through buffers
%000,000.00 s Flink 1.4 wFlink 1.5
g 4,000,000.00
5
> 3,000,000.00
£ 2,000,000.00
2
=4 1,000,000.00
£
£
0.00

0,00 1,00 2,00 5,00 100,00
Buffer timeout

StreamExecutionEnvironment#setBufferTimeout () *100 nodes x 8 slots



Program optimization




Recap: The Flink stack

Python API Graph API

(upcoming)

Scala API Java AP

Common API

Flink Stream Builder

Flink Optimizer

n

Embeddea Loca

environment Environment
Java collections for debuaggino

Flink Local Runtime

Remote environment
(Regular cluster execution)

Azure Rabbit .

o )=



Program litecycle

Apache

——————————————————————
Python API Graph API
(upcoming)

Embedded
environment

(Java collections)
Local

Environment
(for debugging)

nviror.Mment
Aster executic .t

Single node execution

Dz [ Files ] [ HDFS ]
storage

val sourcel
val source2 = ..
val maxed = sourcel

.map(v => (v._1,v._2,

math.max(v._1,v._2))

val filtered = source2

filter(v => (v._1 > 4))
val result = maxed
.join(filtered).where(0).equalTo(0)
filter(_1 > 3)
.groupBy(0)
.reduceGroup {....}

- Sink 1
~ ~.
Match (A =D)
if (A>3) emit
buildHT (A)
sum(B), avg(C) part./sort (D)
buildl:!T (A)
partition (A)
Map Map
C = max(A,B) if (D>4) emit
[ Source 1 ] [ Source 2
Extract (A.B) Extract (D,E)

]

Reduce (on A)

sum(B), avg(C)

Match (A =D)
if (A>3) emit

= E=n
C := max(A,B) if (D>4) emit

=

204




Flink Optimizer

= The optimizer is the
e component that selects an

(upcoming)

e execution plan for a Common
— APl program

Flink Optimizer

= Think of an Al system

bt . manipulating your program
By u— Remote enwronm_ent Asache Tez
o e t (Regular cluster execution) P
(for debugging)
for you ©
Single node execution Standalone or YARN cluster

Deta = Butdon't be scared - it works

* Relational databases have
been doing this for decades -
Flink ports the technology to
APl-based systems

Embedded

Flink Local Runtime
environment
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Optimization/auto-tuning — A Key design feature
of Flink from its VERY BEGINNING

eas Reduce ff Map e g
(> Festure DT | papire S Total distingt MO oo e (8 oo s
| Count "’99’", Count ;" "5 feature count PR A 1y " (Broedcast) % » Theta Factors
! Reducert*1! my ) (Ry [+ Combiner1
memory
(Local Formarg) |
!
M |
L P = Hep — Reduce ‘E
7:40012 = Feature/Toke a:}" Label :‘r-.: R R ! pe—
/mkaufmaen ﬂoﬁﬂtfﬂ?fl i Document R A 2 ’5 Map | Broadcast)
Iwigipgda S1__L 1 count (M§*) , ) iy Ll
metrory Count (R§*) ..vcdfonwrt Match ~5  Total Sum Yotal Sum KAt
(ot i ks 10 Calculator .. t*1 Recucer < For i 7:40010
i Map Reduce network i L5 [ringwald
memo i Partinion) { [*1.1 Ms:
(Locai -3¢ DF(M) "m. Of (R} r netmwork memory i m
’ . ,m"’ (Petion) | | (1ocal Forwart) PomatSioms
-
{*]
Map E Cross
| Map Reduce Match imo Weight Idt T wweicnt 1of | x (Lo:ct wn::s “c;‘:;wm: woe
L Nermalized Tt “,'; Normalized TF (3¢ | memey | o THaf g Summer‘ 4 Pt s o 2 |
(M) ! (R) Calculator Mopper Reguceri®) | memery i
-1 =] (£ ] 5 (Local Forwand) network
.i hafs://coua- Paranion)
(e memery | 7:40010 '
» ookl it |
ndfsjfcoud- |, eV “oights -
7:40010 Lot ! Map ISigma k/ CoGroup
fringwa ‘ L
s 25 o |3 Tfiof Label eniaiy Theta
/e u | Extractor o Nomallzetr :
32| 4
t) memory
- {Local Formard)
Map Reduce |
~ } hadfs:// e/ fcdoud-
Do you want to hand-tune that? s i T peatre e "R e |
Mapper (*] Summe’r‘ .1' Jringwekd / ald
- i
/Sigma_i/ thetaNormalizer/

F. Hueske, M. Peters, A. Krettek, M. Ringwald, K. Tzoumas, V. Markl, J.C. Freytag:

Peeking into the optimization of data flow programs with MapReduce-style UDFs. ICDE 2013: 1292-1295
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Flink automatically optimizes Execution Plan of a
program

Hash vs. Sort
Partition vs. Broadcast
Caching
Execution Reusing partition/sort
Plan A
Execution
Execution Plan C
Plan B
Run on a sample
on the laptop
Run on large files Run a month later
on the cluster after the data evolved



Flink’s Optimizer

= Inspired by optimizers of parallel database systems
«  Cost models and reasoning about interesting properties.

= Physical optimization follows cost-based approach
 Select data shipping strategy (forward, partition, broadcast)
 Local execution (sort merge join/ hash join)

« Keep track of interesting properties such as sorting, grouping and
partitioning

= Optimization of Flink programs more difficult than in the relational case:
+ No fully specified operator semantics due to UDFs
*  Unknown UDFs complicate estimating intermediate result sizes
* No pre-defined schema present
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Example of optimizing a Flink program

orders = ..
lineitems = ..

filteredOrders = orders
.filter(o => dataFormat.parse(l.shipDate).after(date))
.filter(o => o.shipPrio > 2)

lineitemsOfOrders = filteredOrders

.join(lineitems)
.where(“orderld”).equalTo(“orderId”)
.apply((o,1) => SelectedItem(o.orderDate, l.extdPrice))

priceSums = lineitemsOfOrders
.groupBy(“orderDate”).sum(“l.extdPrice”);
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Another Optimization Example

val
val

val

val

val

orders = DataSource(...)
= DataSource(...)

items

filtered = orders filter {

prio = filtered join items where { _.id } isEqualTo { _.id }

sales

(2)

case class Order(id: Int, priority: Int,
case class Item(id: Int, price: double, )
case class PricedOrder(id, priority, price)

map {(o,1i) => PricedOrder(o.id, o.priority, li.price)}

= prio groupBy {p => (p.id, p.priority)} aggregate ({_.price},SUM)

(0,1)

Grp/Agg

(0) = (0)

Join

ya

Filter

i

Grp/Agg
Join

LN

sort (0,1)

partition(0)
L

Filter

Orders

Items

L\

Orders

sort (0)

)

partition(0)

Items
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Two execution plans

GroupRed GroupRed

sort sort

7 1]

hash-part [0,1]

Best plan forward

Join depends on Join

buildHT probe of in put files buildHT probe

& XX\ AN

broadcast forward hash-part [0] hash-part [0]

\

DataSource
lineitem.tbl

211

Filter Filter

DataSource

DataSource DataSource

orders.tbl orders.tbl




Data Flow Optimizer

Al

hash-part [0,1]

partial sort{0,1]

Join
Hybrid Hash

DataSource
orders.tbl

forward

DataSource
lineitem_tbl

Best plan
depends on
relative sizes
of input files

DataSource
orders.tbl

sort[0,1]

DataSource
lineitem _tbl
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Example: Flink's Optimization on Transitive Closure

Co-locate DISTINCT + JOIN

I
lace .—Forwardj

------------------------------------------------

\
\

Hybrid Hash Join Group Reduce (Sorted (on [0]))

== + it 5
ik PArGE S o Co-locate JOIN + UHash -I)’Laerﬁltllar'\hgr; .[.1]/

s

B

Zwop-ilvz'wndahadndilmnwy

« What you write is not what is executed * Flink Optimizer decides:

» No need to hardcode execution strategies — Pipelines and dam/barrier placement
— Sort- vs. hash- based execution
— Data exchange (partition vs. broadcast)
— Data partitioning steps
— In-memory caching



More Examples of Optimization

= Task chaining
 Coalesce map/filter/etc tasks

= Join optimizations
* Broadcast/partition, build/probe side, hash or sort-merge

= Interesting properties
+ Re-use partitioning and sorting for later operations

= Automatic caching
« E.g., for iterations
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Yahoo! Benchmark Results (circa Dec 2015)

Storm vs Faink vs Spark

Performed by Yahoo! Engineering, Dec 16, 2015

[..]Storm 0.10.0, 0.11.0-SNAPSHOT and Flink 0.10.1
show sub- second latencies at relatively high
throughputs[..]. Spark streaming 1.5.1 supports high
throughputs, but at a relatively higher latency.

Flink achieves highest throughput with
competitive low latency!

Apache Karka

- 2 B
o €
=" e 1 4 ] —
d _‘— _— - . .
—— — - - — - I by Bend\mark Platform
w00 w0 00 el 1 ¥ FAink or Spark Straming
hrougrout rate |evertyse

Source: hitp://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at dmwy




dataArtisan’s Benchmark Results

Streaming

Batch

2-node 4-node 8-node :
Storm 408K 696K 992K
Spark 379K 642K 912K
Flink 1230K  1260K  1260K B
Figure 10: k-means Strong Scaling experiments for gﬂ'
Spark and Flink in 2 =B of generated data with <.
2-n0de 4-n0de 8-n0de ?OO dimensions and kO:OI:-) clusters gl
Spark 365K 632K 947K _
Flink 851K  1128K  1190K

Windowed Aggregations / Joins

Flink consistently outperforms other streaming

engines in throughput and latency

Figure 11: k-means Production Scaling experiments
for Spark and Flink on 30 nodes with k=30

Iterative Algorithms



Show me the (Performance) Numbers !

Flink, no fault tolerance
(0 msec latency at 99th percentile)

Flink, 5 second checkpoints
(0 msec latency at 99th percentile)

Storm, no fault tolerance
(11 msec latency at 99th percentile)

Storm, fault tolerance activated
(30-120 msec latency at 99th percentile)

Trident, fault tolerance activated
(3000 msec latency at 99th percentile)

Throughput for distributed grep

0.00

40.00 80.00 120.00 160.00
Average throughput (millions of events per second)

200.00



Show me the (Performance) Numbers !

Aggregate throughput for stream record grouping

Storm, at least once | <€ 310,000 events per second

Flink, exactly once

Flink, at most once

0.00 20.00 40.00 60.00 80.00 100.00
Average throughput (millions of events per second)



Show me the (Performance) Numbers !

Latency for stream record grouping
90-th 95.th ki
median  percentile percentile percentile

Storm, at least once

Flink, exactly once

Flink, at most once

0.00 5.00 10.00 15.00 20.00 25.00 30.00 3500 40.00 4500 50.00 55.00

Latency (milliseconds) 219



Show me the (Performance) Numbers !

Latency-throughput tradeoff in Flink using
different values of buffer timeout

120 100.00
90.00
(2]
< 100
S 80.00
2
£ 70.00
£ 80
)
E 60.00
(]
v
a
& 60 50.00
()
o
k: 40.00
(]
&
S 40
° 30.00
E
)
(%)
g 1 20.00
" 20
’ 10.00
0 ~ 0.00

0 5 10 50 100
Flink buffer timeout (milliseconds) 220



Comparing Engine Paradigms & Systems

O @

WEPISELNICS Apache Hadoop 1

(OSDI'o4)

Dryad, Nephele
(EuraSys’07)

O

Apache Tez

PACTs Apache Flink
(SOCC'10, VLDB'12)

RDDs Apache Spark
(HotCloud'10, NSDI'12) 221

O

O



Engine Comparison

- 3
TEZfy  Spark

Transformations lterative

MapReduce on k/v pair

API : : on k/v pair transformations
k/v pairs Readers/Writers collections on collections
Paradigm MapReduce DAG RDD Cyclic
dataflows
Ooti et Optimization Optimization
PETLE200 nons it of SQL queries in all APls
Bateh Batch Batch with Stream with
Execution sorting sorting a.nd memory out-of-core
partitioning pinning algorithms



Batch Comparison

Spor‘lzz

&

API low-level high-level high-level
Data Transfer batch batch pipelined & batch
Memon disk-based JVM-managed Active managed
Management
Iterations sisystam IEIE A0, streamed
cached cached
Fault tolerance task level task level job level
Good at massive scale out | data exploration hgavy b_a ck.e i
iterative jobs

Libraries

many external

built-in & external

evolving built-in &
external
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Streaming Comparison

Streaming

API

Fault tolerance

State

Exactly once

Windowing

Latency

Throughput

Sporiz

“true” mini batches “true”
low-level high-level high-level
: coarse
tuple-level ACKs | RDD-based (lineage) cheekpointing
not built-in external internal

at least once

exactly once

exactly once

not built-in restricted flexible
low medium low
medium high high
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Deployment and Process Model




Diverse Deployment Scenarios

= Many different deployment scenarios

R

* Mesos docker
* Docker/Kubernetes

» Standalone

; <
) a8
- Eic (IR
Q /) 4&




Flink Improvement Proposal 6

= Introduce generic building blocks

= Compose blocks for different
scenarios

= Effort started by:

@ dataArtisans

Alibaba Group

Flip-6 design document:
https://cwiki.apache.org/confluence/pages/viewpage.action?pageld=65147077



https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077

Flink’s Revamped Distributed Architecture

= Motivation
* Resource Elasticity
* Support for Different Deployments
« REST interface for Client-Cluster communications

= Introduce generic Building Blocks
= Compose blocks for different scenarios




Different Usage Patterns

= Few long running vs. many short running
jobs

» Overhead of starting a Flink cluster

= Job isolation vs. sharing resources
» Allowing to define per job credentials & secrets
* Efficient resource utilization by sharing them




Job & Session Mode

= Session mode
* Shared cluster for multiple jobs
 Resources can be shared across jobs

* (Cluster deployment and job submission
separate actions

= Job mode

* Dedicated cluster for a single job
* Job should be part of the cluster deployment




Revamped distributed architecture z

",

: . 4. Allocate resources
Dispatcher ResourceManager > ClusterManager

A : A

st x. 3. Request slots
1. Submit job 2. Start job \ 5. Start TaskManager

\ ] v

. ..q < >
Client JobManager | 6. Execute job | TaskManager

o Support for full resource elasticity

» Application parallelism can be dynamically changed
231



The Building Blocks

[Resourcel\/lanager} [ Dispatcher }

« ClusterManager-specific * Lives across jobs

* May live across jobs » Touch-point for job submissions
* Manages available Containers/TaskManagers « Spawns JobManagers

« Acquires / releases resources

JobManager TaskManager
* Single job only, started per job * Registers at ResourceManager
Thinks in terms of "task slots" * Gets tasks from one or more

Deploys and monitors job/task execution JobManagers



The Building Blocks

[ Dispatcher } {Resourcel\/lanager} (4) Start TaskManager

(2) Start 1 (5) Re&

JobManager (3) Request slots
(1) Submit Job (6) Offer slots

TaskManager

{ Client J JobManager (7) Deploy Tasks




Building YARN PER-JOB MODE

YARN
Cluster
Client

|

(1) Submit YARN App.
(JobGraph / JARs)

-
/

)

| YARN
"| ResourceManager

(2) Spawn
Application Master

s A
Cluster Entrypoint | (5) Start
[ Elink-YARN ;_ TaskManagers

TaskManager
ResourceManager %

(6) Register

T (4) Request slots TaskManager

JobManager —

(7) Deploy TaskManager
1 (3) Spawn job Tasks

[ MiniDispatcher ]

o E Em m o - o EE EE EE EE EE E EE O O EE Em Em E Em e o

- e e e o o o o o EE EE EE EE EE EE EE EE EE N S S M N N N EE EE EE EE EE O o e

YARN Cluster



Differences to old YARN Per-job mode

= User JARs in classpath of all components
* Fewer class loading issues

= Dynamic resources allocation

» No longer necessary to specify number of containers
at start-up

= No two phase job submission



BUILDING YARN Session MODE

(1) Submit YARN App.

(FLINK - session)

{ Client }

(3) Submit
Job A

(9) Submit
Job B

YARN
ResourceManager
1 (2) Spawn

Application Master

Cluster Entrypoint
[ Flink-YARN }

(6) Start
TaskManagers

(7) Register

%

ResourceManager
(S) (11)
Request Request

slots slots
JobManager| [JobManager

(A) (B)
(4) Start (10) Start
JobMngr JobMngr

(8, 12) Deploy
Tasks

A
\[ Dispatcher ]
-

T mmm mm m o e EE B B BN EEE B B EEE EEE B EEE MEE BN EEE AEE EE EEE EEm SEE B EEn EEE e B A e M M e

[
»

YARN Cluster

TaskManager
TaskManager

TaskManager



Flink Mesos Integration

(1) Start and

monitor [ Marathon ] (3) Allocate
dispatcher container
for Flin ster
PITIPROST eemmms=s T e o P v e a
Mesos Cluster ] JobGraph/Jars Flink Mesos
: - :
Client J ) Dispatcher (6) Allocate
: (4) Start Process containers
" (and supervise) for TaskManagers
I\
I Flink Master Process Mesos Task
i askManag
: (7) Register
1 | (5) Requestlots Mesos Task
I
I anage
L olo g (8 Deploy TaskManager




Building Flink-on-Mesos (Job mode)

(1) Submit Mesos App.
(JobGraph / JARs)

'/
Mesos
Master

Cluster Client J

l (2) Spawn

Application Master

% : i )
Application Master (@) Start

W‘: TaskManager
Rear

S Resmter TaskManager

[ : anage J’ (6) Deploy TaskManager
) Tasks

—————————————————————————————————— -

Mesos Cluster

(3) Requestfslots

-~
(




Flink as a library (and still as a framework)

* Deploying Flink applications should be as easy as starting a process
Bundle application code and Flink into a single image

* Process connects to other application processes and figures out its role
Removing the cluster out of the equation

P

New process
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Deploying Flink as a Framework vs. as a Library

"hadmta ’Eah
Vg 1CIDC)D ggsa MESOS

Client

(
: Worker
1
1
1
App > Master —  Worker
1
g 1
1
: Worker
1
1
\

Framework Deployment

—— o e =

Standing Processes / Endpoints,

Dynamic Control over Resources

N o ) ] (e e ) o o

kubernetes

AIOIOJ Master

R Master

Worker

Master Image

Master Container Worker Container

!

Worker

Worker Image

Worker

Worker

Worker Container Worker Container

Library Deployment

Kubernetes Cluster

Long running application
under the control of your

container manager
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Deployment Model Wrap up

= New distributed architecture allows Flink to
support many different deployment
scenarios

* Flink now supports a native "job” mode as
well as the “session” mode

= Support for full resource elasticity

= REST interface for easy cluster
communication



Visualization tools

Filter (ID = 4)
...ogAnalysis$FilterDocByKeyWords

Parallelism: 16
Driver Strategy: FlatMap

Forward

Map (ID = 3)

Data Source (ID = 7)

....36), (29,url_5.,6), (33,url_6,

Parallelism: 1

Data Source (ID = 10)
...009-2-16), (url_14,2004-11-9),

Parallelism: 1

Hash Parston on [0]

»| Projection [0]
Parallelism: 16
Driver Strategy: Map}

Filter (ID = 6)
...al. WeblLogAnalysis$FilterByRank

Parallelism: 16
Driver Strategy: FlatMap

Fifter (ID = 9)
...LogAnalysis$FilterVisitsByDate

Parallelism: 16
Driver Strategy: FlatMap

Forward

Join (ID =2)

...erator$ProjectFlatjoinFunction

Parallelism: 16
Driver Strategy: Hybrid Hash (build: Projection [O]),

—i Forward |

Map (ID = 8)
Projection [0]
P arallelism: 16
Driver Strategy: Map

CoGroup (ID = 1)
.... Webl ogAnalysis$AntiJoin Visits

Parallelism: 16
Driver Strategy: Co-Group
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Visualization tools

WebLogAnalysis Example

Scheduled: 10/4/2014 6:30:03 PM
Runtime: 1 sec 265 msecs
Status: FINISHED

s Loy

9999 SCHEDULED

9

600 700
18:30:03

FINISHED
DataSource ([(url_O.dolor ad amet enim laoreet nostrud veniam aliquip ex nonummy ¢

DataSource ([(url_2,2003-12-17), (url_9,2008-11-11), (url_14,2003-11-5), (url_46,20!
DataSource ([(30,url_0,43), (82,url_1,39), (56,url_2,31), (96,url_3,36), (31,url_4,36), (29,u

CHAIN Filter (org.apache.flink.examples.java.relational.WebLogAnalysis$FilterDocByKeyV

CHAIN Filter (org.apache.flink.examples.java.relational. WebLogAnalysis$FilterVisitsByDate) -> Map (Project
Filter (org.apache.flink.examples.java.relational.webLogAnalysis$FilterByRank)
Join(org.apache.flink.api.java.operators..
CoGroup (org.apache.flink.examples.ji

DataSink(Print to

800 900 o 100 200 300 400 500 600 700 800 9S00
18:30:04
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Visualization tools

4 | Filter (org.apache.fiink.examples.java.relational.WweblLogAnalysisSFilterByRank)

‘ Join(org.apache.flink.api.java.operators.. ‘

2. CoGroup (org.apache.flink.examples.j l
1 DataSink(Print to l
2 3 b ° -
600 700 800 9S00 o 100 200 300 400 500 600 700 800 9S00
18:30:03 18:30:04

CoGroup (org.apache.flink.examples.java.relational. WebLogAnalysis$AntiJoinVisits)

localhost_3 H deploying | running ‘

localhost_2 H deploying l running

localhost_1 I deploying | running ‘

localhost_0O : deploying running ‘
500 550 600 650 700 750 800 850 900
18:30:04
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Recapping the
Evolution of Flink




Evolution Timeline of Flink

2008 2009 2010
> @ @ > @
Initial vision for a big DFG Proposal for Grant Award
gaia a”alyt';;_ atiorn Stratospphere | Start of Stratosphere | Y
.l | Fabh s socely o= 2010
Nephele / PACTs
; paper published .
/ | P i
APACHE Flink Grant Award DFG P
! roposal for
Incubator Project Start of Stratosphere || Stratosphere ||

O < © (] ® <

Spinning Fast Ite-
A 2014 2012 raFt)ive Dgataﬂows 2012 2011

paper published YLDB

The VLDB Journalf
o 1st Flink Forward
Stratosphere System . " - Conference
paper published 4 Aracre Flink é dataArtisans @ Flink Forward
Top Level Project Founded Samlettn i
> o > [ @
h@[ 1 Sections» Categories» Events Podcasts Jobs  Reports  Newsletter Company) 0 [y Lo v
Flink Flink
e | % " i
A Conference in Berlin > 30 Companies %r;?ﬁl;l:gﬁ;omard
2 premier Flink using Flink f?egembgr 2016 Flink 1.0
German startup data Artisans sells g;(a)r? fFer;ennccich e )
to Alibaba for €90 million < . < . . 246

 Andi Degeler, January 7th, 2017 2016 2016



Evolution Timeline of Flink

Batch processing

August 2014 247



Flink learns to stream in real time

DataStream API

Stream Processing

Runtime
Distributed Streaming Data Flow
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Evolution Timeline of Flink

Batch processing Stream processing

e (Continuous & real-time

November 2014 249



Flink learns to remember D
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Flink learns to remember

@
M [ D[] -




Flink learns to remember
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Flink learns to remember D

.

A D -

Remember where we left off
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Evolution Timeline of Flink

Batch processing Stream processing

e (Continuous & real-time
e Stateful & exactly once

June 2015 254



Latency vs. Throughput

highlaiency Prevailing
1 belief
=
low high throughput ¢ 10s of millions of events/s

e Latency downto 1 ms
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Flink becomes event-time aware

=IVAIR=

WAIRSS

Episode Episode Episode Episode Episode Episode
|V V Vi I | 1]

1977 1980 1983 1999 2002 2005

Processing
time

Episode
VII

2015

Episode
VIII

2017



Flink becomes event-time aware

Event time

Episode Episode Episode Episode Episode Episode Episode Episode
I I 1] IV V VI VII VIII

1999 2002 2005 1977 1980 1983 2015 2017



Evolution Timeline of Flink

Batch processing Stream processing

Continuous & real-time
Stateful & exactly once
e High throughput & low
latency
e Eventtime

November 2015
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More than just analytics: ProcessFunction

class MyFunction extends ProcessFunction[MyEvent, Result] {

// declare state to use in the program
lazy val state: ValueState[CountWithTimestamp] = getRuntimeContext().getState(..)

def processtElement(event: MyEvent, ctx: Context, out: Collector[Result]): Unit = {
// work with event and state and schedule timers

}

def onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[Result]): Unit = {

// handle callback when event-/processing- time instant is reached

}

e ProcessFunction gives access to state, time

and events D_ THE SOCIAL NETWORK
FOR PETROLHEADS
o Low level API TRB

» Enables data-driven applications
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Evolution Timeline of Flink

e Continuous & real-time

e Stateful & exactly once

e High throughput & low
latency

e Eventtime

February 2017
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Evolution Timeline of Flink (by v1.5)

e Continuous & real-time e Applications as first
e Stateful & exactly once class citizens
e High throughput & low

latency

e FEventtime

May 2018
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Flink 1.5 in a nutshell

Hardening

Faster network stack
Application level flow control

Resolving dependency hell

Interoperability

Resource elasticity
REST client-server interface

Container entrypoint
iSC
State TTL

Broadcast state

Kafka exactly-once producer

Scaling

Incremental snapshots
Local recovery

Scalable timers

Stream SQL
SQL client
User-defined functions

More powerful joins

262 |



New in Flink 1.5

= FLIP-6
« Tighter integration with the resource manager (YARN, Mesos, Kubernetes)

»  Enables dynamic management of resources
*  Rework of the client/cluster communication to be REST-based

= Localised Failure Recovery
 Failures don't require restoring all state from distributed storage
« TaskManagers keep state on machines
*  Failures that are not caused by machine failures lead to faster recovery

= 50% Network Stack Rewrite

«  Better throughput at very low latencies
« Much improved backpressure handling



New in Flink 1.5 (cont'd)

= Broadcast State
« APl that enables new use cases such as applying dynamic CEP patterns on a stream or join

= 5SQL CLI

* Aninteractive command-line interface for executing SQL queries on Flink

= Unified Table Sources

* A new interface for defining sources for a Table API/SQL program that allows defining
sources from a configuration file

= Loads more automated testing/release verification
«  Streamlined testing which will lead to lower overhead for releases



Flink 1.6 and Beyond

v1.6 released in Aug 2018,
v1.7 In Nov 2013




What's new in Flink 1.6

= Autoscaling

 Automatic and dynamic changes in the parallelism of Flink programs
and individual operators

= Hot-standby replication

* Replication of the state of operations to multiple machines so that
we can instantly migrate computation in case of failures

= Zero-downtime scaling and upgrades

» Parallelism changes, framework upgrades and user-code updates
without any downtime



What's new in Flink 1.6 (cont'd)

= More Table API/SQL connectors, integration with data bases
» Dynamic Tables based on a data base, not a stream

= End-to-end batch/streaming integration
* Unification of the DataStream and DataSet APIs
* Efficient execution of batch programs and streaming programs
+ Dynamic switching of execution modes based on workload

= Support for more programming languages
*  Upcoming: Python and Go (via Apache Beam)
 Tensorflow for Machine Learning and Al (also via Apache Beam)



What's new in Flink 1.6 (cont'd)

= Java 9 (FLINK-8033) and Scala 2.12 (ELINK-/811)

= Improvements for container environments,
e.g. K8s (FLINK-9495)

= Full job submission through REST (FLINK-9280)
= State back-ends for timers (FLINK-9485)
= State back-ends for operator state



https://issues.apache.org/jira/browse/FLINK-8033
https://issues.apache.org/jira/browse/FLINK-7811
https://issues.apache.org/jira/browse/FLINK-9495
https://issues.apache.org/jira/browse/FLINK-9280
https://issues.apache.org/jira/browse/FLINK-9485

What's new in Flink 1.6 (cont'd)

= BucketingSink with Flink file systems (including S3)

= State evolution: support type conversion on snapshot
restore

= Stream SQL:
* support “update by key” Table Sources
« more table sources and sinks (Kafka, Kinesis, Files, K/V stores)

= CEP

* Integrate CEP and SQL via MATCH_RECOGNIZE (ELINK-7062)

* Improve CEP performance of SharedBuffer on RocksDB
(FLINK-9418)



https://issues.apache.org/jira/browse/FLINK-7062
https://issues.apache.org/jira/browse/FLINK-9418

Major New Features in Flink 1.7

= Support of State (Schema) Evolution
= Exactly-Once support with AWS S3-streaming
= MATCH_RECOGNIZE support in Streaming SQL

= Temporal Tables and Temporal Joins in Streaming

5QL
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More Details on New Features in
Flink 1.5 and Beyond




Large, larger, Flink D

—' Checkpoint
: ; Time *=
State 3 A : A .

578 10TB 15TB State Size
B Incremental B Full

Incremental
snapshots

» Snapshot only state diff
* Incremental snapshots allow to handle very large state
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Faster failover is always better }:‘

&

é_ _é




Varying workloads D

- Resources - Workload - Resources - Workload

e I

Time Time

* Violating SLAs vs. wasting money
« Varying workloads require to adapt resources
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Revamped distributed architecture z

",

: . 4. Allocate resources
Dispatcher ResourceManager > ClusterManager

A : A

st x. 3. Request slots
1. Submit job 2. Start job \ 5. Start TaskManager

\ ] v

. ..q < >
Client JobManager | 6. Execute job | TaskManager

o Support for full resource elasticity

» Application parallelism can be dynamically changed
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How much control do | need?

Batch Continuous
processing processing

Real-time &
data-driven
applications

e Multiple short lived stages

o Different resource requirements
per stage

o Efficient execution requires
control over resources

» Flink allocates actively resources

Continuously processing operators
Constrained by external systems,
SLAs and application logic
External system can assign
resources

Flink reacts to available resources
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Active vs. reactive mode

« Active mode

Flink is aware of underlying cluster framework
Flink allocate resources
E.g. existing YARN and Mesos integration

« Reactive mode

Flink is oblivious to its runtime environment

External system allocates and releases resources
Flink scales with respect to available resources
Relevant for environments: Kubernetes, Docker, as a
library
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Scaling automatically B

O 210

+ Latency
» Throughput
+ Resource utilization
+ Connector signals
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How we create Flink Jobs

Flink APls

Stream/Batch Processing

Runtime
Distributed Streaming Data Flow

Version Control

(it gets casier once vou get the basic idea that branches an

homcomorphic endofunctors mapping

submanifolds of a Hilbert space.
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Powered by Apache Flink
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Retail, e-commerce Finance Telco, loT, Internet & mobile

= Better product = Differentiation Infrastructure = Personalization
recommendations via tech = Infrastructure = User behavior

= Process monitoring = Push-based monitoring monitoring

= Inventory products * Anomaly = Analytics
management = Fraud detection detection

y B = R NETHLI Alibaba Group \@ » zalando

=
— P

>
ottogroup <CapitalOne

ERICSSON

281



Flink in Practice (by Sept 2016)

Largest job has > 20 operators, runs on > 5000
vCores in 1000-node cluster, processes millions of

Alibaba éroup events per second

bOU Ues e 30 Flink applications in production for more than
YahER ’ one year. 10 billion events (2TB) processed daily

Complex jobs of > 30 operators running 24/7,
processing 30 billion events daily, maintaining
state of 100s of GB with exactly-once guarantees
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Flink in Practice: more sample applications

UBER

Athena X Streaming SQL
Platform Service

€.

Alibaba Group

100s jobs, 1000s nodes, TBs state
metrics, analytics, real time ML
Streaming SQL as a platform

NETFLIX

Streaming Platform as a Service

3700+ Docker containers running @&... 4000+ Kafka brokers, 50+ clusters
1400+ nodes with 22K+ cpu cores 100°s of Data Streams (Flink Jobs)

Fraud detection
Streaming Analytics Platform
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How Large (or Small) can Flink get?




Blink at Alibaba Global Shopping Festival
N e ~ Blink is Alibaba's

crmmm m “ “ “ m Flink-based System

B L 5 The Largest Job
sins * thousands of subtasks
472 million records/second at peak @

* tens of TBs state

 Blink (t‘ (::. (::‘ .\/:)
» Thousands of Jobs

Alibaba Streaming Computing Platform

* >5k Nodes
* >500k CPU cores




Keystone Routing Pipeline at Netflix
(as presented at Flink Forward San Francisco, 2018)

' Keystone ! q
'-\j\‘ o : > - IVE

% ' ‘ -
R
. g elasticsearch

>.|/(

lJI\)"

I

'3 | Fronting
8
A HTTPFé/ 8 3l Kafka % Stream
>~ 9 t . Consumers
Event Consumer
Producer Kafka

Keystone router scale

e ~3trillion events/day
e ~2,000 routing jobs
e ~10,000 containers

e ~200,000 parallel operator instances



Small Flink

= Can run in single process
= Some users run it on loT Gateways

= Also runs with zero dependencies in IDE



Future Direction for Flink




Todays processing landscape




What’s Next: True Batch/ Stream Unification

EEEDD




Other Ongoing Objectives
for Flink




Other Ongoing Objectives for Flink

Provide state of the art streaming capabilities
Operate in the largest infrastructures of the world
Open up to a wider set of enterprise users

Broaden the scope of stream processing



Authoritative Free Books on Apache Flink

Introduction
to Apache Flink

Stream
Processing with
Apache Flmk

Fabian Hueske & Vasiliki Kalavri

Available at:

https://mapr.com/introduction-to-apache-flink/
https://info.lightbend.com/rs/558-NCX-702/images/preview-apache-flink.pdf



https://mapr.com/introduction-to-apache-flink/
https://info.lightbend.com/rs/558-NCX-702/images/preview-apache-flink.pdf




Flink runtime

features




Flink Local Runtime

Python API . Apache
(upcoming) MRQL

" Local runtime, not
S
— the distributed

execution engine

i Regular cluster execution
. °
Single node execution Standalone or YARN cluster a o W a a p p e n S
Data Files HDFS s3 JDBC Azure . .
INnside every

parallel task
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Flink runtime operators

= Sorting and hashing data

+ Necessary for grouping, aggregation, reduce, join,
cogroup, delta iterations

= Flink contains tailored implementations of hybrid
hashing and external sorting in Java

» Scale well with both abundant and restricted
memaory sizes



Flink distributed execution
= Pipelined

» Same engine for
Flink and Flink
streaming

Single node ex Standalone or YARN clu ° Local runtime can be
storage - - EINED - executed on other
engines

Coordination built on Akka library
+ E.g., Java collections

and Apache Tez .



DataSet<String> text = env.readTextFile(input);

DataSet<Tuple2<String, Integer>> result = text
flatMap((str, out) -> {
for (String token : value.split("\\W")) {
out.collect(new Tuple2<>(token, 1));

})
By (@)
gate(SUM, 1);

0,1
1 Romeo, 3

wherefore, 1
P art, 1

Romeo, N\thous

wherefore
Flink Client & art tho
Optimizer

Nor arm,

nor face, “\pa

nor any
other part
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It you need to know one

thing about Flink is that

you don't need to know
the internals of Flink.



Philosophy

= Flink "hides” its internal workings from the user
= This is good
» User does not worry about how jobs are executed
* Internals can be changed without breaking changes

= .. and bad

» Execution model more complicated to explain
compared to MapReduce or Spark RDD
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el Stateful
ming Execution




Stateful Event & Stream Processing

Filter / State

Transform read/write >ink

Source
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Stateful Event & Stream Processing

Scalable embedded state

@ Access at memory speed &
scales with parallel operators



Stateful Event & Stream Processing

Rolling back computation
Re-processing @

Re-load state

In input streams

ReW @



Event Sourcing + Memory Image

periodically snapshot
the memory

event /
command

] event log O

persists events
(temporarily)

main memory

A

| | A |
7N
1
i
-

variables/structures

Process
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Event Sourcing + Memory Image

Recovery: Restore snapshot and replay events
since snapshot

3 |

] event log (* HEENENE

persists events
(temporarily)

Process
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Stateful Event & Stream Processing

]



Checkpointing & Recovery




What is State in a Streaming Application ?

e Functions need to remember records or temporary results

User A clicks

X

~ UserAis 560
an active user

Variable
(State)

User A: (3 + 1) clicks

e State Is elther per operator instance or per record key
e State backends: JVM heap or RocksDB on local disk
e |ocal == fast access
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Maintaining and Checkpointing State

e State Is periodically checkpointed to durable storage
o A checkpoint is a consistent snapshot of the state of all operators

In-Memory or
On-Disk State

Local State Periodic, Asynchronous,
Access Incremental Snapshots

Input
Logi Logi
Tasks -
Durable
Output : Storage
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Checkpointing / Recovery

= Flink acknowledges batches of records
* Less overhead in failure-free case
* Currently tied to fault tolerant data sources (e.qg., Katka)

= Flink operators can keep state
* State is checkpointed
 Checkpointing and record acks go together

= Exactly one semantics for state
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Checkpointing / Recovery

Operator checkpoint
starting

Pushes checkpoint barriers
through the data flow

barr[er

................ » D ata St ream —»

After barrier= * Before barrier =

Not in snapshot art of the snapshot
(backup till next snapshot)o

checkpoint in progress

Checkpoint done

Chandy-Lamport Algorithm for consistent asynchronous distributed snapshots
313



Flink State and Distributed Snapshots

Take state snapshot

EEEE = N .: A D

EEEE| g | |:|
O B i /abe Storage

Source Stateful
Operation

"Asynchronous Barrier Snapshotting”




Flink State and Distributed Snapshots

Take state snapshot ! (e.g. copy-on-write)

EEEE( = : - A/
EEEE| g N /

Source Stateful




Flink State and Distributed Snapshots

Durably persist
full snapshots

: . . asynchronously
Processing pipeline continues

[]
| EEEE( = .1
m N
( HEEEN O ] Stable Storage
[] H BN .1
Source Stateful

Operation



Task Local Recovery




Recovery From Failure

| mmmm( ™ : :.
| mEEE| g ) I..

Source Stateful



Recovery From Failure

Resume to checkpoint offset

( S—— O ‘Restore 5

| mmEE|)

Stable Storage
Restore State

Source Stateful
Operation



Local Recovery (Flink 1.5)

Local Snapshot  Corresponding

snapshot,
but physical
. representation

.. can differ

-

Resume to checkpoint offset

| mmEE|)

" Stable Storage

*
"

0"
*

A
| mmEE|)
A

‘0
*
*
‘Q
*

Source .

*
‘0
‘0
P‘
’0
R —

Local Snapshot




Local Recovery (TM survived)

Local Snapshot

Restore State
(local)

Resume to checkpoint offset

( IIIIO
| mmEE|)
| Stable Storage
Source
Restore State
(local)

Local Snapshot




Local Recovery (TM lost)

Resume to checkpoint offset

( EEEE O Restore St

(remot

| Stable Storage
Source
Restore State
(local)

Local Snapshot

| mmEE|)




Localized State Recovery (since Flink 1.5)

Piggybags on internal Multi-version

data structures:

o LSM Tree (RocksDB)

« MV Hashtable (Fs / Mem State Backend)

8 7.5 secs
Q
£ 6
g
S o4
2 LA
. O 2 <1sec
Setup -
: [ ]
. 0
500 MB state per node flink 1.4 Flink 1.5

* (Checkpoints to S3

« Soft failure (Flink fails, machine survives)
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Having tun
with snapshots



Creating periodic Snapshots

e > time
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Replay from Savepoints to Drill Down

Incident of Interest

------------------------------------------------------------------------------------- + time
'Debug Job" Extra sink for
(modified version of original Job) / trace output
Filter —

(events of interest only) 326



Pause / Resume style execution

Bursty Event Stream  (events only at only end-of-day )

----------------------------------------------------------------------------------------- - time
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Pause / Resume style execution

Bursty Event Stream  (events only at only end-of-day )

----------------------------------------------------------------------------------------- - time

Checkpoint / Savepoint
Store 328




Resource Elastisticity




Dynamic Scaling Flink applications

= Relatively Straightforward to Scale Stateless Jobs:

Source \ o
Scale Up T/>< ( . Scale Down
N Mapper ) BN N
() : / \ J
| l ) @ sink () ) |

* Scale up: Deploy new tasks
* Scale down: Cancel running tasks

\

ll
&




Dynamic Scaling Stateful Flink applications

= Problem: Which State(s) to assign to new task(s) ?




Repartitioning of Operator States

= Breaking Operator States up into Finer
Granularity
- State has to contain multiple entries m o]
* Automatic re-partitioning w.rt. granularity 2

= Example: Kafka Source
Store Offset for each Partition
 Individual entries are repartitionable

> <

//"/'_-\“\ {parﬁtion'd: 1' offset: 42} //’/-_\"“’\ [ partitionld: 1J offset: 42 J

partitionld: 3, offset: 10

£ | partitionld: 3, offset: 10 |
partiionich o-ctbet < F - | partitionld: 6, offset: 27 |




Keyed vs. Operator State

Keyed Operator

» State bound to a key * State bound to a subtask
* E.g. Keyed UDF and window state * E.g. Source state



Repartitioning of Keyed States

* Similar to consistent hashing

*Split key space into key groups

* Assign key groups to tasks

Key space

Key group
#H1

Key group
#2

Key group
#3

Key group
#4



Repartitioning of Keyed States (cont'd)

* Rescaling changes key group /Q\ O
assignment

\

\~_

* Maximum parallelism defined by 1
#key groups
Smomo /|



Automatic Scaling

0O

h * Latency T T
* Throughput |
() ) e« Resource utilization ( ) ()
4 Q ‘ \l____,,/ S ___/_/ Q \__{,,/

o ~* Connector signals



Broadcast State




Why Broadcast State?

(

Evaluate a global, changing Set of Rules over a
(non-) keyed stream of events.

\




How to use Broadcast State

COAANTIA -

Stream A: data

OAlAl

Stream B: rules




How to use Broadcast State

CAANCIA
Stream A: data A
[]

Stream B: rules .




How to use Broadcast State

Keyed State

Stream A: data é

Stream B: rules ‘



How to use Broadcast State

COAANTIA -

Stream A: data

oalan S

Stream B: rules




How to use Broadcast State

Broadcast State

AN

Stream A: data

oalam[ S

Stream B: rules




How to use Broadcast State

Stream A: data

oalan o

Stream B: rules



How to use Broadcast State

connect

mA o 2

Stream A: data

N s

Stream B: rules




Broadcast State Wrap up

= Partition elements by key
= State associated to a key

= Broadcast elements
= State to store the broadcasted elements
* Non-keyed
* Identical on all tasks even after restoring/rescaling

= Ability to connect the two streams and react to incoming
elements

+ Connect keyed with non-keyed stream
* Have access to respective states

https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/broadcast state.html



https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/broadcast_state.html

Backup/ Excess




1. Failures and downtime 2. Out of order and late data
= Checkpoints & savepoints = Eventtime support
= Exactly-once guarantees = Watermarks

state
snapshots -
TN

-
o ,/:¢’ ,a-‘\:\A
BN EEEEE ¢ 1 ]
: ? ‘~~~~~\~~~--—"”¢’W
3. Results when you need them 4. Accurate modeling
= Low latency = True streaming engine
= Triggers = Sessions and flexible
Latency at Full Throughput Wi n d OWS
FUZ N E —————— E _____
oo ] HEEEEs) (—]
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5. Batch + streaming
= One engine
= Dedicated APIs

Batch Streaming
program program

7. Ecosystem

= Rich connector
ecosystem and 3™ party
packages

o
W/ﬁ% épe elastic ==

\

cassandra ‘@hadﬁugp KIQ”E% n fl
kafka .
> ] BhRabbit

6. Reprocessing

= High throughput, event
time support, and
savepoints

flink -s <savepoint> <job>

8. Community support

=  One of the most active
projects with over 200
contributors

' vy
"'V( ? 508
9

349



Summary: Cornerpoints of Flink Design

Flexible Data Robust Algorithms on
Streaming Engine Managed Memory
- Low Latency Stream Proc. - No OutOfMemory Errors
—> Highly flexible windowing —> Scales to very large JVMs
semantics (i.e. think Beam) - Efficient Checkpointing/
: Recovery & Saved points Op.
High-level APls,
beyond key/value pairs Pipelined Execution

of Batch Programs

—> Better shuffle performance
—> Scales to very large groups

- Java, Scala, Python(beta only)
- Relational-style optimizer

Additional Library Support

- Storm Compatibility Library Native Iterations
> Graphs / ML Pipelines - Very fast Graph Processing

> ML & Streaming ML (catching up) — Stateful Iterations for ML




What is Flink's uniqgue contribution in the
streaming data ecosystem?
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Before Flink, users had to make hard choices
between volume, latency, and accuracy
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Flink eliminates these tradeoffs

= 10s of millions events per second for stateful
applications

= Sub-second latency, as low as single-digit
milliseconds

= Accurate computation results
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A broader definition of accuracy: the results that |
want when | want them

1. Accurate under failures and downtime
7. Accurate under out of order data

3. Results when you need them
4. Accurate modeling of the world
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Having a dependable framework enables
more stateful applications to run as
streaming applications
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